期刊文献+

基于IRT模型参数的BP神经网络估计 被引量:15

The Parameter-estimation Method of BP Neural Network Based on Item Response Theory
下载PDF
导出
摘要 该文依据项目反应理论(IRT)的0-1记分模式,应用BP神经网络对项目参数和考生能力进行估计。在对这些参数进行估计时,将得分矩阵分别采用得分率、通过率、相关系数、猜测率进行降维处理。此方法经计算机模拟实验,结果与目前流行的参数估计方法进行分析比较,能得到更好的精度,降低了误差。训练好的网络可以用于实际测试中,并且只需较少的人数和题数,能得到较好的精度。在计算机模拟实验过程中,考生能力和项目难度、项目区分度采用正态分布比均匀分布要好得多。 The item parameters and person ability in Dichotomously Scored of Response Theory model are estimated with Back-Propagation Neural Network.The dimension of Scoring matrixes X is descended by using scoring rate or passing rate or coefficient of correlation or guess rate when estimating those item parameters.The method is simulated in computer,and the results show that the item parameters estimation is more precise than the current prevailing software.The well -trained Neural Network can output the estimate value in field test and needs less number of examinees and items.The errors between estimate values and true values are very small.The experiment shows that the behavior of the simulation data drawn from normal distribution is better than those drawn from uniform distribution.
出处 《计算机工程与应用》 CSCD 北大核心 2004年第17期56-57,108,共3页 Computer Engineering and Applications
基金 国家自然科学基金项目(编号:60263005) 全国教育科学规划重点课题项目(编号:DBB010501)资助
关键词 IRT 参数估计 BP神经网络 Item Response Theory(IRT),item parameter estimation,Back-Propagation neural network
  • 相关文献

参考文献5

  • 1Frank B Baker. Item Response Theory:parameter estimate technique[M].Marcel Dekker, Inc, 1992:57~62,104~107,178~179
  • 2Susan E Embretson,Steven P.Reise Item Response Theory for psychologists,Lawrence Erlbaum Associates[M].Publishers,2000:5
  • 3丛爽.面向Matlab工具箱的神经网络理论与应用[M](第2版)[M].合肥:中国科学技术大学出版社,2003..
  • 4余嘉元.基于联结主义的连续记分IRT模型的项目参数和被试能力估计[J].心理学报,2002,34(5):522-528. 被引量:16
  • 5胡守仁 余少波 戴葵.神经网络导论[M].北京:国防科技大学出版社,1998..

二级参考文献12

  • 1余嘉元.运用联结主义模型研究知觉边界效应问题[J].心理学报,2001,33(2):123-126. 被引量:6
  • 2Hambleton R K. Item Response Theory: Principles and Applications. Boston: Kluwer-Nijhoff Pub,1985.58~63
  • 3Baker F B. Item Response Theory: Parameter Estimation Techniques. New York: M.Dekker,1992.66~71
  • 4McLead P. Introduction to Connectionist Modeling of Cognitive Processes. New York: Oxford University Press, 1998.256~261
  • 5Mahwah N J,Erlbaum L L. Localist Connectionist Approaches to Human Cognition. New York: Oxford University Press,1998,188~192
  • 6Anderson, J. A. An Introduction to Neural Networks. Cambridge:The MIT Press, 1995,136~143.
  • 7Haykin S S. Neural Networks: A Comprehensive Foundation. Upper Saddle River, N. N., Press Hall, 1999. 178~181
  • 8Fahlman S E,Lebiere C. The Cascade-correlation learning architecture. In: Touretzky D S ed. Advances in Neural Information Processing Systems. Los Altos, CA: Morgan Kaufmann, 1990. 524~532
  • 9Samejima F. Homogeneous case of the continuous response model. Psychometrika, 1973, 38(3): 203~219
  • 10Muller H. A Rasch model for continuous ratings. Psychmetrika, 1987, 52(2):165~181

共引文献25

同被引文献125

引证文献15

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部