期刊文献+

基于IGA的用户Agent模型与设计 被引量:9

USER'S AGENT MODEL AND DESIGN USING IGA
原文传递
导出
摘要 个性化信息检索与获取是目前理论与应用研究的一个热点.其关键在于如何体现用户个性化以及有效缓解用户疲劳、加快算法的收敛.本文以图形检索为应用背景,提出了基于交互式遗传算法的用户Agent模型.该软件Agent针对现有研究的不足,将用户个性化信息获取与个性化检索集成在一起,两者相辅相成.在获取用户个性化信息时,我们设计了一种结合归纳和统计的用户情感计算机制,通过对前几代操作的结果进行归纳、计算,得到用户的特异性偏好;在利用用户情感偏好实现检索时,我们设计了利用个体偏好的引导进化方法来指导交互式遗传算法的选择、变异等操作.实验验证该模型在人脸图形检索中确实达到了体现用户个性化,有效缓解用户疲劳的目的. The individual information retrieval is a hotspot of theoretic and applied research. Its key point is how to embody the user's individuation, alleviate the user's fatigue, and quicken the arithemetic's convergence. This paper takes graphic information retrieval as application background and provides User's Agent Model based on IGA. Aimming at the shortage of existing research, this software Agent combines the user's individual ioformation acquiring with individual retrieval. We design an affectional interest computing mechanism using induction and statistic in early operating results to acquire the user's individual information, and we design a method which conducts evolution using individual affectional interest to direct the selector and crossover. Experiments on human facial graphic information retrieval validata its effectiveness in embodying the user's individuation and alleviate the user's fatigue.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2004年第2期244-249,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60204009)
关键词 交互式遗传算法 用户Agent 个性化 情感 图形检索 Interactive Genetic Algorithm User's Agent Individuation Affectional Interest Graphic Retrieval
  • 相关文献

参考文献10

  • 1Takagi H. Interactive Evolutionary Computation: Fusion of the Capabilities of EC Optimization and Human Evaluation. Proc of the IEEE, 2001, 89(9): 1275- 1296.
  • 2Takagi H, Ohya K, Ohsaki M. Improvement of Input Interface for Interactive Genetic Algorithms and Its Evaluation. In: Proc of the 12th Symposium on Fuzzy System.. Tokyo, Japan, 1996, 513 -516.
  • 3Venturini G, Slimane M, Morin F. On Using Interactive Genetic Algorithms for Knowledge Discovery in Databases. In: Pmc of the 7th International Conference on Genetic Algorithms. London, UK,1997, 696 - 703.
  • 4Fang C, Chen J. A Study on Multi Criteria Decision Marking Mode: Interactive Genetic Algorithms Approach. In: Proc of the IEEE Conference on Systems, Man, and Cybernetics. Tokyo,Japan, 1999, 356- 362.
  • 5Oksaki M, Takagi H, Ohya K. An Input Method Using DiscreteFitness Values for Interactive GA. Intelligent and Fuzzy Systems,1998, 6:131 - 145.
  • 6Lee J Y, Cho S B. Sparse Fitness Evaluation for Reducing User Burden in Interactive Genetic Algorithm. In: Proc of the 8th linernational Conference on Fuzzy Systems. Seoul, South Korea, 1999,Ⅱ,998- 1003.
  • 7胡静,李金龙,陈恩红,王煦法.交互式遗传算法中用户评估方法研究[J].小型微型计算机系统,2001,22(5):562-564. 被引量:5
  • 8Ingu T, Takagi H, Ohsaki M. Improvement of Interface for Interactive Genetic Algorithr~s - Proposal for Fast GA Convergence. In:Proc of the 13th Symposium on Fuzzy System. Toyarna, Japan,1997, 859- 862.
  • 9Takagi H, Kishi K. On-Line Knowledge Embedding for an Interactive EC-Based Montage Systca'n. In: Proc of the 3rd International Conference on Knowledge-Based Imelligent Information Engineering Systems. Adelaide, Australia, 1999, 280-283.
  • 10Lim I S. Evolving Facial Expressions. In: Proc of the IEEE International Conference on Evolutionary Computation. Perth, WA,Australia, 1995,Ⅱ: 515-520.

二级参考文献2

  • 1Fang Chenghsu,Proc SMC'99,1999年
  • 2陈国良,遗传算法及其应用,1996年

共引文献4

同被引文献63

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部