期刊文献+

支持向量机在流程型企业决策支持系统中的应用 被引量:1

Application of SVM in the DSS of Process Manufactory Enterprise
下载PDF
导出
摘要 首先简单介绍了支持向量机的概念,接着以某流程型企业的具体决策支持系统为应用背景,论述了支持向量机在伙伴企业选择、生产预警故障诊断中的应用。在伙伴企业选择方面使用了支持向量机的回归算法,在生产预警和故障诊断方面使用了支持向量机的分类算法,其中,还配合使用主成分分析方法,对学习样本起降维降噪作用。实验证明,采用支持向量机方法,不仅具有较高的训练效率,而且有更高的精确度。 This paper presentes the principles of the Support Vector Machine.Based on a concrete Decision Support System of certain process manufactory enterprise,it also discusses the application of SVM in the Partner Enterprise Selection and Fault Diagnosis.Two algorithm are concerned,the regression algorithm in the Partner Enterprise Selection and the classification algorithm in Fault Diagnosis.Besides,Principal Component Analysis algorithm,which is applied to lessen dimensions and decrease noise of input space of the training set,is also discussed.It is proved that SVM can respectively improve not only the training efficiency but also the training accuracy.
出处 《计算机工程与应用》 CSCD 北大核心 2004年第23期209-211,共3页 Computer Engineering and Applications
基金 上海市科委基金项目资助
  • 相关文献

参考文献11

  • 1Volker Blanz,Thomas Vetter.A Morphable Model For The Synthesis Of 3D Faces
  • 2V Blanz,B Scholkopf et al.Comparison of view-based object recognition algorithms using realistic 3D models
  • 3Glenn Fung,olvi L Mangasarian.Data Selection for support Vector Machine Classifiers
  • 4David R Musicant.Data mining via mathematical programming and machine learning[D].Phd Thesis.University of Wisconsin-Madison,http://www.research.microsoft.com/~jplatt/smo.html,http://citeseer.nj.nec.com/platt98sequential.html,2000
  • 5O L Mangasarian,D R Musicant.Lagrangian support vector machines[R].Technical Report 00-06,Data Mining Institute,Computer Sciences Department,University of Wisconsin,Madison,Wisconsin,ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-06.ps,2000-06
  • 6Yuh Jye Lee,O L Mangasarian.SSVM:A smooth support vectormachine.Computational Optimization and Applications.ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/99-03.ps,2000
  • 7D R Musicant.NDC:normally distributed clustered datasets.www.cs.wisc.edu/_musicant/data/ndc/,1998
  • 8萧嵘,孙晨,王继成,张福炎.一种具有容噪性能的SVM多值分类器[J].计算机研究与发展,2000,37(9):1071-1075. 被引量:17
  • 9V N Vapnik.The Nature of Statistical Learning Theory[M].Springer,NewYork,1995
  • 10C J C Burges.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998;2(2):121~167

二级参考文献3

  • 1阳含熙,植物生态学的数量分类方法,1981年
  • 2Zhang Xuegong,IEEE Workshop on Neural Networks for Signal Pro-cessing,1999年
  • 3王碧泉,模式识别理论、方法和应用,1989年

共引文献16

同被引文献8

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部