期刊文献+

微制造平台微振动的H_2/H_∞混合控制 被引量:7

Mixed H_2/H_∞ Optimal Control for Microvibration of Micro-manufacturing Platform
下载PDF
导出
摘要 基于啄木鸟头部生物构造及其仿生隔振机理 ,采用混合隔振技术建立了微制造平台隔振系统。该系统以空气弹簧和橡胶层作为被动隔振元件、超磁致伸缩致动器作为主动隔振元件。针对 H2 最优控制和 H∞ 鲁棒控制的优缺点 ,主动控制器采用H2 / H∞ 混合控制进行设计 ,并通过 L MI凸优化方法求解 H2 / H∞ 混合控制器。仿真结果表明所设计的 H2 / H∞ 混合控制器具有良好的鲁棒稳定性和时域性能 ,可在非常宽的频率范围对基础干扰和由微制造设备产生的直接干扰所引起的微制造平台振动进行有效的控制 ,其振动控制效果明显优于 H∞ Based on the bionic isolation mechanism and organic texture of woodpecker's brain,a hybrid vibration isolation system of micro-manufacturing platform is developed.This system uses air springs and rubber layer as passive vibration isolation elements and giant magnetostrictive actuators as active vibration isolation elements. Considering the merit and defect of the H 2 optimal control and H ∞ robust control, the active vibration control system is designed according to the mixed H 2/H ∞ optimal control theory,and the controller by LMI convex optimal solution is established. The simulation results show that the developed mixed H 2/H ∞ control system is robust stable and optimal in the sense of H 2 norm,and has good isolation performance against the floor disturbance and the direct disturbance produced by the micro-manufacturing equipment over wide frequency area.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2004年第3期298-301,305,共5页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金资助项目 ( 5 0 0 75 0 78)
关键词 微制造平台 混合隔振 H2/H∞混合控制 仿生学 超磁致伸缩致动器 隔振元件 微机电系统 Micro-manufacturing platform Hybrid vibration isolation Mixed H 2/H ∞ control Bionics Giant magnetostrictive actuator
  • 相关文献

参考文献9

二级参考文献5

  • 1登哈德WG.惯性元件试验(文集)[M].北京:国防工业出版社,1978..
  • 2(美)夏天昌.系统辨识-最小二乘法[M].北京:国防工业出版社,1984..
  • 3Safonov M G,Proc ACC,1988年
  • 4Hong S U,Trans ASME,1990年,112期,8页
  • 5沙成满,王恩德,唐春安.考虑地基岩土动力学特性的结构H_∞鲁棒控制[J].东北大学学报(自然科学版),2001,22(5):557-560. 被引量:3

共引文献29

同被引文献27

  • 1何朕,赵文斌,于达仁.摄动矩阵的分解[J].电机与控制学报,2004,8(3):275-277. 被引量:2
  • 2登哈德(Denhard W).惯性元件试验[M].北京:国防工业出版社,1978:112-114.
  • 3Nakamura of active Y, Nakayama M, Yasuda M. Development six-degrees-of-freedom micro-vibration control system using hybrid actuators comprising air actuators and giant magnetostrictive actuators[J]. Smart Mater. Struct, 2006, 15:1 133-1 142.
  • 4Doyle J, Packard A, Zhou K. Review of LFTs, LMIs, and μ[A]. Proceedings of the 30th IEEE CDC [C]. Brighton, 1991:1 227-1 260.
  • 5Ungar EE,Sturz DH,Amick CH.Vibration Control Design of High-Technology Facilities[J].Sound and Vibration,1990,(24):20-27.
  • 6Nakamura Y,Najayama M,Masuda K,Yasuda M,Fujita T.Development of 6-DOF Microvibration Control System Using Giant Magnetostrictive Actuator[J].Proceedings of SPIE Conference on Smart Materials and Smart Structures,Newport Beach,CA,U.S.A.,1999,(3671):229-240.
  • 7飞思科技产品中心.Matlah 7辅助控制系统设计与仿真[M].北京:电子工业出版社,2005.
  • 8Nakamura Y, Nakayama M, Masuda K, et al. Development of active 6-DOF microvibration control system using giant magnetostrictive actuator [A]. Proceedings of the SPIE Conference on Smart Systems for Bridges, Structures and Highways [C]. Newport Beach, California, March 1999 : 229-240.
  • 9Nakamura Y, Nakayama M, Yasuda M, et al. Development of active six-degrees-of-freedom micro-vibration control system using hybrid acturators comprising air actuators and giant magnetostrictive actuators[J]. Smart Materials and Structures, 2006, 15:1 133- 1 142.
  • 10Zhang Chunliang, Mei Deqing, Chen Zichen. H∞- based active microvibration control of micro-manufac- turing platform[A]. Proceedings of The Fourth International Symposium on Fluid Power Transmission and Control (ISFP'2003)[C]. April 8-10, 2003, Wuhau, China : 105-110.

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部