摘要
针对水动力学实际问题多存在复杂几何边界的状况,提出了用不规则游动网格求解偏微分方程的蒙特卡罗法,建立了相应的随机游动模型。选择具有复杂自由面的堰闸流动问题作为算例,验证了新方法的正确性。与有限元法相比,蒙特卡罗法解势流等线性问题时更灵活,可以根据需要,单独计算流动区域内任意一点的未知物理量,且所用计算容量较少。
The Monte Carlo method is applied to simulate the flow with complex boundaries. In order to improve the simulation precision, a new Monte Carlo method with irregular random walk grid for solving the partial differential equation is presented. The sluice and spillway flow is solved by the Monte Carlo method. The numerical results agree well with the experiment data. Compared with the finite element method, the Monte Carlo method is more effective for linear problems such as potential flow. It can calculate the velocity and pressure respectively at any points in flow field.
出处
《水科学进展》
EI
CAS
CSCD
北大核心
2004年第4期415-419,共5页
Advances in Water Science
基金
国家自然科学基金资助项目(50279044)~~
关键词
蒙特卡罗法
不规则游动网格
随机游动模型
复杂边界
势流
Monte Carlo method
irregular random walk grid
random walk model
complex boundary
potential flow