期刊文献+

一类带有阶段结构的比率依赖捕食系统周期解 被引量:3

Periodic solutions of a ratio dependent predator-prey system with stage structure for prey
下载PDF
导出
摘要 考虑一类在周期环境中的比率依赖捕食系统,食饵种群分为幼年和成年两个阶段,该系统中捕食者的增长函数是成年食饵与捕食者的比率函数,幼年食饵按照一定比例转化成年食饵.通过运用拓扑度方法,获得了该系统至少存在一组可易验证的严格正周期解的充分条件. This paper reports a periodic ration-dependent predator-prey model in which prey is divided into two classes:immature and mature,immature prey changes into mature prey with a proportionality,while the per capital predator growth rate shall be a function of the ration of the mature prey to predator abundance.A set of easily verifiable sufficient conditions is derived for the global existence of periodic solutions with strictly positive components by using the method of coincidence degree.
出处 《信阳师范学院学报(自然科学版)》 CAS 2004年第3期255-260,共6页 Journal of Xinyang Normal University(Natural Science Edition)
基金 河南省自然科学基金资助项目(0211010400)
关键词 周期解 比率依赖 捕食系统 拓扑度 periodic solution ratio-dependent stage structure coincidence degree
  • 相关文献

参考文献19

  • 1CUSHING J M.Integrodifferential equations and delay models in population dynamics[J].Lecture Notes in Bio-mathematics,Vol.20,Spring -Verlag,New York:1977.
  • 2CUSHING J M.Periodic time-dependent predator-prey[J ].SIAM Appl Math,1966,32:82-95.
  • 3LEUNG A.Periodic solutions for prey-predator differential delay equation[J].Differential Equations,1977,26:391-403.
  • 4KUANG Y.Delay differential equations with application in population dynamicsM].Boston,Academic Press,1993.
  • 5BERETTA E,KUANG Y.Convergence results in a well known delayed predator-prey system[J].Math Anal Appl,1996,204:840-853.
  • 6HASTINGS A.Age-dependent predation is not a single process [J].Theor Popu Biol,1983,23:347-362.
  • 7SONG Xinyu,CUI Jing'an.The stage-structured predator-prey system with delay and harvesting[J].Applicable Analysis,2002,81(5):1127 -1142.
  • 8WANG Wendi,CHEN Lansun.A predator-prey system with stage -structure for predator[J].Computer Math Appl,1997,33(8):83-91.
  • 9ARDITI R,GINZBURG L R.Coupling in predator-prey dynamics:radiodependence[J].Theor Biol,1989,139:311-326.
  • 10ARDITI R,AKCAKAGA H R.Variation in plankton densities amon glakes:a case for ratio-dependent models[J].Amer Naturalist,1991,138,1 287-1296.

同被引文献23

  • 1Walter W. Ordinary differential equations (graduate texts in mathematics) [ M]. Now York: Springer,1998.
  • 2Gopalsarny K. Stability and oscillation in delay differential equations of population dynamics[M]. Kluwer Academic, 1992.
  • 3Kuang Y. Delay differential equations with applications in population dynamics[ M]. London:Academic Press, 2004.
  • 4Goh B S. Stability in Two Species Interactions[J]. Math Biol(S0303-6812), 1976,3:313-318.
  • 5Hastings A. Global Stability in Two Species Systems [ J ]. Math Biol( S0303-6812 ), 1978,20 (5) :399-403.
  • 6He X I. Stability and Delays in a Predator-prey System [ J ]. Math Anal Appl ( S0022-247 X ), 1996, 198 : 355 -370.
  • 7Song X Y, Chen L S. Optimal Harvesting and Stability for a Predator-prey System with Stage Structure[J]. Acta Mathematicae Applicatae Sinica: English Series ( S0252-9602 ) ,2002,18 ( 3 ) : 423-430.
  • 8Song X Y, Chen L S. Optimal Harvesting and Stability for a Two Species Competitive System with Stage Structure[ J ]. Mathematical Biosciences ( S0025-5564 ), 2001,170(2) : 173-186.
  • 9Clark C W. Mathematical Bioeconomics : the Optimal Management of Renewable Resouces[ M]. 2nd ed. New York:John Wiley and Sons,1990.
  • 10Sutinen J G, Anderson P. The Economics of Fisheries Law Enforcement [ J ]. Land Econ (S0023-7639), 1985,61:387-397.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部