期刊文献+

高阶FIR多带阻数字滤波器优化设计研究(英文) 被引量:1

Study on Optimal Design of High-order FIR Digital Filter with Multi-band Stop
下载PDF
导出
摘要 研究了FIR线性相位滤波器的幅频特性与余弦基函数神经网络算法之间的关系,给出了FIR高阶多带阻数字滤波器的优化设计实例,提出并证明了神经网络算法的收敛性定理.仿真结果表明,算法不仅是有效的,而且在FIR高阶数字滤波器优化设计领域具有很大的优越性.且算法不涉及逆矩阵的计算,有效解决了国内外其它优化设计方法无法设计高阶FIR线性相位滤波器的问题. The relationship between the amplitude-frequency response of type one FIR filter and the algorithm of neural network based on cosine basis functions is studied, and the optimal design example of the high-order FIR digital filter with multi-band stop is presented. The simulation result shows that the algorithm is not only efficient but also excellent in the field of optimal designs of the type one FIR digital filter. And the algorithm is free of the operation of inverse matrix. It solves the problem that one can not design high-order FIR filters by using other approaches.
作者 曾喆昭
出处 《长沙电力学院学报(自然科学版)》 2004年第3期18-21,共4页 JOurnal of Changsha University of electric Power:Natural Science
关键词 高阶FIR数字滤波器 神经网络算法 优化设计 幅频特性 收敛性定理 high-order FIR digital filter neural network algorithm optimal design
  • 相关文献

参考文献5

  • 1Goodwin G C, Sin K S. Adaptive Filtering Prediction and Control [ M ].Pretice-Hall, Englewood Cliffs, NJ,1984.
  • 2Ljung L, Soderstrom T. Theory and Practice of Recursive Identification[M] .The MIT Press, 1983.
  • 3Hui Zhao, Juebang Yu. A Novel Neural Network--Based Approach for designing digital filter[A]. Proc ISCAS'97/IEEE[C], Hong Kong,1997,2 272-2 275.
  • 4Hui Zhao,Juebang Yu. A Novel Neural Network--Based Approach for designing 2--D FIR filters[J]. IEEE Trans on CASII, 1997,44( 11 ) :1 095-1 099.
  • 5王炎,廖晓峰,虞厥邦.FIR数字滤波器设计的复数神经网络方法[J].信号处理,1999,15(3):193-198. 被引量:10

共引文献9

同被引文献13

  • 1姜睿,罗贵明.基于加权最小二乘法的最优适应控制器[J].自动化学报,2006,32(1):140-147. 被引量:11
  • 2LIM Y C,LEE J H,CHEN C K,et al. A weight least squares algorithm for quasi- equiriple FIR and ⅡR digital filter design [J]. IEEE Trans Signal Processing, 1992,40 (3) : 551 - 558.
  • 3LEE J H,CHEN C K,LIM Y C. Design of discrete coefficient FIR digital filters with arbitrary amplitude and phase responses [J]. IEEE Trans Circuits Syst, 1993,40 (7) : 444 - 448.
  • 4GOODWIN G C,SIN K S. Adaptive filtering prediction and control [ M ]. New Jeresy :Pretice - Hall, 1984.
  • 5LJUNG L,SODERSTROM T. Theory and practice of recursive identification[M]. Massachusetts :The MIT Press, 1983.
  • 6ZHAO Hui ,YU Jue-bang. A novel neural network-based approach for designing digital filter[C]//Proc ISCAS'97/IEEE. Hong Kong: IEEE, 1997 : 2272 - 2275.
  • 7ZHAO Hui ,YU Jue-bang. A novel neural network-based approach for designing 2- D FIR filters [J]. IEEE Trans on CASII, 1997, 44(11 ) : 1095 - 1099.
  • 8王炎,廖晓峰,虞厥邦.FIR数字滤波器设计的复数神经网络方法[J].信号处理,1999,15(3):193-198. 被引量:10
  • 9赖晓平.FIR数字滤波器的递推最小二乘设计算法[J].信号处理,1999,15(3):260-264. 被引量:25
  • 10涂承媛,涂承宇.一种新的收敛于全局最优解的遗传算法[J].信息与控制,2001,30(2):116-119. 被引量:13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部