期刊文献+

从地理数据库中探测奇异值 被引量:2

Detecting outliers from geographic database
下载PDF
导出
摘要 从大型地理数据库中自动发现知识的方法是迫切需要的。本文从探测奇异值的一般方法入手,探讨了四种典型方法的基本思想以及优缺点。根据地理数据的特点,基于距离的奇异值探测方法具有较好的适用性,其关键问题在于定义距离函数。以地理数据库中的道路数据为例,本文说明了如何利用基于距离的奇异值探测方法,从大型、高维的地理数据库中探测奇异值。实验结果表明本文的方法是可行的、有效的。 It is vital to discover knowledge automatically from large geographic databases.This paper discusses four basic approaches of detecting outliers,summarizes their main ideas and evaluates their strengths and weaknesses.The distance-based approach is suitable for geographic data.Its key is to define an appropriate distance function.By applying the distance-based outliers datectron method from road datasets of a geographic databases,we show how effective outliers can be found in a large and high-dimensional geographic database.
出处 《测绘科学》 CSCD 2004年第5期12-15,共4页 Science of Surveying and Mapping
关键词 地理数据库 数据挖掘 知识 奇异值 分布 geographic databases data mining knowledge outline distribution
  • 相关文献

参考文献7

  • 1Preparata F P and M I Shamos. Computational geome try: an introduction [M]. New York: Spinger-Ver lag, 1985: 47-60.
  • 2Tukey J. Mathematics and the picturing of data [A].In: Proceedings of the International Congress on Mathematices [C], Berlin: 1975.
  • 3T Johnson, I Kwok, R Ng: Fast computation of 2-dimensional depth contours [J]. Knowledge Discovery and Data Mining, 1988, (4): 224-228.
  • 4Edwin M Knorr, Raymond T Ng and Vladimir Tucakov. Distance-Based outliers: Algorithms and Applications [J]. The VLDB Journal, 2000, 8(3):237-253.
  • 5S Ramaswamy, R Rastogi, K Shim. Efficient algo rithms for mining outliers from large data sets [A]. In:ACM SIGMOD Conference Proceedings [C], New Or leans: 2000.
  • 6E Knorr and R Ng. Algorithms for mining distance based outliers in large data sets [J]. VLDB Conference Proceedings, 1998: 392-403.
  • 7李德仁,王树良,李德毅,王新洲.论空间数据挖掘和知识发现的理论与方法[J].武汉大学学报(信息科学版),2002,27(3):221-233. 被引量:237

二级参考文献48

共引文献238

同被引文献14

引证文献2

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部