期刊文献+

金刚石刀具前角对超精密切削过程影响的有限元分析 被引量:3

Finite element analysis for the influence of rake angles of diamond tool on ultraprecision cutting process
下载PDF
导出
摘要 基于大变形有限元理论和更新的拉格朗日方程式,建立热机械耦合的平面应变正交切削模型,并利用通用的商业有限元软件,对6061铝合金的超精密切削过程进行有限元仿真.分析金刚石刀具前角对切削力、切屑变形、切屑根部最大应变、作用于前刀面最大压应力和切削温度分布的影响.结果表明:随前角由负向正变化,切屑厚度变小而长度变长、切屑的曲率半径随着变小,切削力和切屑-刀具接触面上最大压应力则随之下降,刀尖附近的切削温度逐步上升,但切屑根部的最大应变则保持不变.以此优选金刚石刀具前角. Based on large deformation theory and updated Lagrangian procedure, a coupled thermo-mechanical plane strain model of orthogonal cutting process is developed. And resorting to a finite element model, the ultra-precision cutting process of 6061 aluminum alloys is simulated by utilizing general commercial software. The influences of rake angles on cutting forces, chip deformation, maximal strains of chip root and maximal compressive stress on rake face are obtained. Results show that when the rake angle changes from the negative to the positive, chip thickness decreases and chip length increases, curvature radius of chip, cutting forces and maximal compressive stress at the interface between tool and chip decrease, and the cutting temperature near tool tip raises at the same time. However, the maximal strain near chip root keeps a constant. The rank angle of diamond tool should be selected reasonably according to the analysis.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2004年第9期1220-1223,1234,共5页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(50175022) 航天支撑技术基金资助项目(0223HIT07) 武器装备预研基金资助项目(51418020403HT0902).
关键词 超精密切削 金刚石刀具 前角 有限元分析 Diamond cutting tools Finite element method Strain control
  • 相关文献

参考文献9

  • 1[2]KLAMECHI B E. Incipient chip formation in metal cutting - A three dimension finite element analysis [ D ]. Urbana, IL: University of Illinois at Urbana - Champaign,1973.
  • 2[3]KLOCKE F, BECK T, HOPPE S, et al. Examples of FEM application in manufacturing technology[J]. Journal of Materials Processing Technology, 2002,120:450-457.
  • 3[4]MACKERLE J. Finite-element analysis and simulation of machining: a bibliography (1976 - 1996) [J]. Journal of Materials Processing Technology, 1999, 86: 17 - 44.
  • 4[5]Mackerle J. Finite - element analysis and simulation of machining: an addendum A bibliography ( 1996 - 2002)[ J ]. Journal of Materials Processing Technology, 2003,43:103 - 114.
  • 5[6]Lin Z -C, Lai W -L, Lin H Y, et al. The study of ultra - precision machining and residual stress for Nip alloy with different cutting speeds and depth of cut[J]. Journal of Materials Processing Technology, 2000,97:200 - 21.
  • 6[7]Kim K W, Lee W Y, Sin. H - C. A finite element analysis for the characteristics of temperature and stress in micro - machining considering the size effect [ J ]. Journal of Machine Tool & Manufacture, 1999, 39:1507 - 1524.
  • 7[8]Lin Z -C, Lo S -P. Ultra-precision orthogonal cutting simulation for oxygen-free high-conductivity copper [ J ].J of Materials Technology, 1997,65:281 -291.
  • 8[9]Lovell M R, Bhattacharya S, Zeng R. Modelling of orthogonal machining process for variable tool-chip interfacial friction using explicit dynamic finite element methods [ A]. Proceddings of the CIRP International Workshop on Modeling of Machining Operations [ C ]. Atlanta,Georgia, USA: 1998:265 - 276.
  • 9王洪祥,董小瑛,董申.金刚石车削表面微观形貌形成机理的研究[J].哈尔滨工业大学学报,2002,34(4):509-512. 被引量:11

二级参考文献5

  • 1[1]ASAI S. Observation of chip producing behaviour in ultra-precision diamond machining and study on mirror-like surface generating mechanism [J]. Precision Engineering , 1990,12(3): 137-143.
  • 2[2]NAOYA IKAWA, SHOICHI SHIMADA. Minimum thickness of cut in micromachining[J] . Nanotechnology,1992(3) :6-9.
  • 3[3]CHRISTOPHER ARCONA. Tool force, chip formation and surface finfish in diamond turning [D]. Raleigh:North Carolina State University, 1996.
  • 4[4]DRESCHER J D. Tool force, tool edge, and surface finish relationships in diamond turning [D]. Raleigh: North Carolina State University, 1992.
  • 5[5]YUAN Z J, ZHOU M, DON S. Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultraprecision machining[J]. J of Materials Processing Technology, 1996,62:327-330.

共引文献10

同被引文献34

  • 1铁贵鹏,戴一帆,尹自强,关朝亮.慢刀伺服加工自由曲面的表面形貌预测[J].航空精密制造技术,2009,45(6):6-9. 被引量:1
  • 2吴峻峰,白朔,刘树和,徐红军,成会明.大尺寸各向同性热解炭材料的制备与表征[J].新型炭材料,2006,21(2):119-124. 被引量:29
  • 3黄荔海,李贺军,李克智,张守阳.碳密封材料的研究进展及其在航空航天领域的应用[J].宇航材料工艺,2006,36(4):12-17. 被引量:29
  • 4Liang S Y,Su J C. Residual Stress Modeling in Or- thogonal Machining[J].CIRP Annals-Manufacturing Technology, 2007, 56(1): 65-68.
  • 5Choi Y. Influence of Tool Flank Wear on Perform- ance of Finish Hard Machinged Surfaces in Rolling Contact[J]. The International Journal of Fatigue, 2010, 32(2): 390-397.
  • 6Mamalis A G,Kundrak J, Gyani K. On the Dry Ma- chining of Steel Surfaces Using Superhard Tools[J]. The International Journal of Advanced Manufactur- ing Technology, 2002, 19(3) : 157-162.
  • 7Thiele J D, Meikote S N,Peascoe R A, et al. Effect of Cutting-edge Geometry and Workpiece Hardness on Surface Residual Stress in Finish Hard Turning of ASI52100 Steel[J]. Journal of Manufacturing Sci- ence and Engineering, Transactions of the ASME, 2000, 122(4): 642-649.
  • 8Jiang H,Umhrello D, Shivpuri R. Investigation of Cutting Condition and Cutting Edge Preparations for Enhanced Compressive Subsurface Residual Stress in the Hard Turning of Bearing Steel[J].Journal of Materials Processing Technology, 2006, 171 (2) 180-187.
  • 9Matsumoto Y, Hashimoto F,Lahoti G. Surface In- tegrity Generated by Precision Hard Turning [J]. CIRP Annals- Manufacturing Technology, 1999,48 (1): 59-62.
  • 10M' Saoubi R, Outeiro J C, Chandrasekaran H, et al. A Review of Surface Integrity in Machining and Its Impact on Functional Performance and Life of Ma- chined Products[J]. International Journal of Sustain- able Manufacturing, 2008, 1 (1/2) 203-236.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部