摘要
通过对重要极限limΔx→ 0 (1+Δx) 1Δx=e的变换 ,结合函数加减、乘数等运算寻找到了指数导数的运算规律 ,并把这些定理与公式应用到定义高阶对数导数理论中 。
In this paper, by way of the important limit (lim)Δx→0(1+Δx)^(1Δx)=e the sufficient and necessary conditions, equal relations between the exponential derivative and the derivative are proved, some operational rules in addition, subtraction, numerical multiplication of functions are obtained, the theorems and formulas are applied to define higher-order logarithmic derivatives, the operational rules of higher-order logarithmic derivatives are proved.
出处
《青岛建筑工程学院学报》
2004年第3期93-98,共6页
Journal of Qingdao Institute of Architecture and Engineering
关键词
高阶导数
指数导数
充要条件
对数导数
higher-order derivative, exponential derivative, sufficient and necessary condition, logarithmic derivative