期刊文献+

对数导数的高阶导数及其运算性质 被引量:3

The Higher-order Derivative of Logarithmic Derivative and Its Operational Rules
下载PDF
导出
摘要 通过对重要极限limΔx→ 0 (1+Δx) 1Δx=e的变换 ,结合函数加减、乘数等运算寻找到了指数导数的运算规律 ,并把这些定理与公式应用到定义高阶对数导数理论中 。 In this paper, by way of the important limit (lim)Δx→0(1+Δx)^(1Δx)=e the sufficient and necessary conditions, equal relations between the exponential derivative and the derivative are proved, some operational rules in addition, subtraction, numerical multiplication of functions are obtained, the theorems and formulas are applied to define higher-order logarithmic derivatives, the operational rules of higher-order logarithmic derivatives are proved.
作者 郑一 韩立红
出处 《青岛建筑工程学院学报》 2004年第3期93-98,共6页 Journal of Qingdao Institute of Architecture and Engineering
关键词 高阶导数 指数导数 充要条件 对数导数 higher-order derivative, exponential derivative, sufficient and necessary condition, logarithmic derivative
  • 相关文献

参考文献3

二级参考文献6

共引文献7

同被引文献12

  • 1周世勋.量子力学教程[M].北京:高等教育出版社,1986..
  • 2郭敦仁.数学物理方法[M].北京:人民教育出版社,1979.36-51.
  • 3Ruthven D M, Farooq S, Knaebel K S. Pressure Swing Adsorption . New York: VCH Publishers, Inc. , 1993.
  • 4Serbezov A S, Sotirchos S V. Mathematical modeling of the adsorptive separation of multicomponent gaseous mixtures. Chem. Eng.Sci. , 1997, 52(1):79-91.
  • 5帕坦卡SV著 郭宽良 译.传热和流体流动的数值方法[M].合肥:安徽科学技术出版社,1982..
  • 6Hassan M M, Raghavan N S, Ruthven D M. Numerical simulation of a pressure swing air separation system-a comparative study of finite difference and collocation methods. The Canadian Journal of Chem. Eng. , 1987, 65:512-516.
  • 7Sun L M, Quere P Le, Levan M D. Numerical simulation of diffusion-limited PSA process models by finite difference methods. Chem.Eng. Sci. , 1996, 51(24): 5341-5352.
  • 8Li Zh, Yang R T. Concentration profile for linear driving force model for diffusion in a particle. AIChE Journal, 1999, 45 (1), 196-200.
  • 9杨锋,林贵平,赵竞全.分子筛氧浓缩器非等温吸附模型[J].北京航空航天大学学报,2002,28(1):8-11. 被引量:9
  • 10郑一.实对数导数及其应用[J].青岛建筑工程学院学报,2003,24(2):82-86. 被引量:1

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部