期刊文献+

数据流中基于计数的频繁模式挖掘 被引量:1

Mining pattern from stream data based on counting
下载PDF
导出
摘要 频繁项集是挖掘流数据挖掘的基本任务。许多近似算法能够有效进行频繁项挖掘,但不能有效控制内存资源消耗。文章提出并实现了0-δ算法,能够有效控制内存消耗问题。在充分的理论分析基础上,还用翔实的实验证明了新方法的有效性。 Mining frequent items is a basic task in stream data mining. Many approximation algorithms behave well in frequent items mining,but can not control their memory consumption. 0-δ algorithm that can solve the memory consumption problem was proposed and implemented. Besides sufficient analysis in theory,some extensive tests were also presented to show this algorithm is effective and efficient.
出处 《计算机应用》 CSCD 北大核心 2004年第10期4-6,共3页 journal of Computer Applications
基金 国家 86 3计划项目 (2 0 0 2AA41 3 3 1 0 )
关键词 数据流 数据挖掘 频繁项集挖掘 data stream data mining frequent item(set)s
  • 相关文献

参考文献10

  • 1[1]AGRAWAL R,SRIKANT R.Fast algorithms for mining association rules[A].Proceedings of 20th International Conference on Very Large Data Bases[C].1994.487-499.
  • 2[2]MUTHUKRISHNAN S.Data streams:algorithms and applications[EB/OL].http://athos.rutgers.edu/~muthu/stream-1-1.ps,2004.
  • 3[3]ALON N,MATIAS Y,SZEGEDY M.The space complexity of ap-proximating the frequency moments[A].ACM STOC[C].1996.
  • 4[4]CHARIKAR M,CHEN K,FARACH-COLTON M.Finding frequent items in data streams[A].Proceedings of the Inttl. Colloquium on Automata,Languages and Programming (ICALP)[C].2002.693-703.
  • 5[5]CHERNO H.A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations[J].The Annals of mathematical Statistics,1952,23(4):493-507.
  • 6[6]COHEN S,MATIAS Y.Spectral bloom filter[A].Proceedings of ACM SIGMOD[C].2003.
  • 7[7]CORMODE G,MUTHUKRISHNAN S.Whats hot and whats not:Tracking most frequent items dynamically[A].Proceedings of 22nd ACM Symposium on Principles of Database Systems(PODS)[C].2003.296-306.
  • 8[8]DATAR M,GIONIS A,INDYK P, et al.Maintaining stream statistics over sliding windows[A].13th Annual ACM-SIAM Symposium on Discrete Algorithms[C].2002.
  • 9[9]DEMAINE E,OPEZ-ORTIZ AL,MUNRO JI.Frequency estimation of internet packet streams with limited space[A].Proceedings of 10th Annual European Symposium on Algorithms[C].2002.348 -360.
  • 10[10]GAROFALAKIS M,GEHRKE J,RASTOGI R.Querying and mining data streams:You only get one look[A].In Tutorial in 28th Intl. Conference on Very Large Data Bases[C].2002.

同被引文献6

  • 1金澈清,钱卫宁,周傲英.流数据分析与管理综述[J].软件学报,2004,15(8):1172-1181. 被引量:161
  • 2常建龙,曹锋,周傲英+.基于滑动窗口的进化数据流聚类[J].软件学报,2007,18(4):905-918. 被引量:61
  • 3黄磊.流数据挖掘综述.软件学报,2004,15(1).
  • 4Charu C Aggarwal, Han J W, Wang J Y, et al. A Framework for Clustering Evolving Data Streams [C ]//Proceedings of the 29th VLDB Conference, Berlin, Germany, 2003.
  • 5Domingos P, Hulten G. Mining High-speed Data Streams [C]//Proe. of the Sixth Intl. Conf. on Knowledge Discovery and Data Mining, 2000 : 71-80.
  • 6Guha S, Mishra N, Motwani R, et al. Clusterlng Data Streams [C]//Proc of IEEE Symposium on Foundations of Computer Science (FOCS'00), 2000: 71-80.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部