期刊文献+

SnPb钎料熔滴与Au/Ni/Cu焊盘的反应过程 被引量:5

Interfacial reaction between molten 63Sn37Pb droplet and Au/Ni/Cu pad
下载PDF
导出
摘要 研究了熔融的SnPb钎料由固定高度滴落到Au/Ni/Cu焊盘上的温度变化过程和界面反应情况。结果表明:对钎料熔滴到达焊盘瞬时的接触温度,熔滴初始温度是其主要影响因素,而高度变化对其影响不大。钎料与焊盘界面产生的金属间化合物形态受钎料熔滴初始温度影响很大。随着滴落钎料初始温度的提高,界面层由Au层基本不反应,变为形成了连续层状AuSn2及针状AuSn4。当初始温度升高到450℃时,AuSn2完全转化为AuSn4,棒状AuSn4生长极为明显,在离界面不远的钎料里发现细小的AuSn4。由计算推出界面反应的时间约为6~7ms,在如此短的时间内,发生Au的溶解和Au Sn化合物的形成,其原因在于Au在熔融钎料中溶解速度随温度变化的特殊性。 Temperature variation of solder droplet, interfacial reaction between molten SnPb droplet and Au/Ni/Cu pad were investigated. The 63Sn37Pb solder ball was heated to the specific temperature above melting point and then dropped to the pad from a certain height. The results show that the instantaneous temperature of solder droplet when it reached the pad is mainly determined by the initial temperature. The morphology of intermetallic compounds is strongly influenced by initial temperature of solder droplet. With the increasing initial temperature, a continuous AuSn_2 and needle-like AuSn_4 formed at the interface. When the temperature reached 450 ℃, all AuSn_2 converted into AuSn_4. Rod-like AuSn_4 grew strongly, some tiny AuSn_4 distributed inside the solder near the interface. The interfacial reaction time is about 6~7 ms, during which Au is quickly dissolved into molten solder forming Au-Sn intermetallic compounds. This process attributed to the discontinuity in the dependence of the dissolution rate of gold on temperature in molten eutectic SnPb solder.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2004年第7期1139-1143,共5页 The Chinese Journal of Nonferrous Metals
关键词 钎料熔滴 凸点 接触温度 金属间化合物 溶解速率 solder droplet bump instantaneous temperature intermetallic compounds dissolution rate
  • 相关文献

参考文献12

  • 1[1]Patterson D S, Elennius P, Leal J A. Wafer bumping technology-a comparison analysis of solder deposition processes and assembly considerations[J]. Advances in Electronic Packaging, 1997, 1(1): 337- 351.
  • 2[2]Rinne G A. Solder bumping methods for flip chip packaging[A]. 1997 47th Electronic Components and Technology Conference[C]. San Jose Califonia: COR,1997. 240- 247.
  • 3[3]Koshoubu N, Ishizawa S, Tsunetsugu H, et al. Advanced flip chip bonding techniques using transferred microsolder bumps[J]. IEEE Transactions on Components and Packaging Technologies, 2000, 23 (2): 399- 404.
  • 4[4]Hotchkiss G, Gonzalo A, Liz J, et al. Tacky dotsTM transfer of solder spheres for flip chip and electronic package applications[A]. 1998 48th Electronic Components and Technology Conference [ C]. Seattle,Washington: COR, 1998. 434- 441.
  • 5[5]Kloeser J, Katrin H, Erik J, et al. Low cost bumping by stencil printing: process qualification for 200 μm pitch[J]. Microelectronics Reliability, 2000(40): 497- 505.
  • 6[6]Li Li, Thompson P. Stencil printing process development for low cost flip chip interconnect[J]. IEEE Transactions on Electronics Packaging Manufacturing,2000, 23(3): 165-170.
  • 7[8]LIU Qing-bin, Orme M. High precision solder droplet printing technology and the state-of-the-art[J]. Journal of Materials Processing Technology, 2001, 115:271 - 283.
  • 8[9]Hayes D J, Royall W, et al. Micro-jet printing of polymers and solder for electronics manufacturing[J].Journal of Electronics Manufacturing, 1998, 8 (3/4):209 - 216.
  • 9[10]Motulla G, Kasulke P, Heinricht K, et al. A low cost bumping process for flip chip technology using electroless nickel and solder ball placement[A]. 1997IEMT/IMC Symposium[C]. Tokyo: The Organizing Committee, 1997. 174- 181.
  • 10[13]Haferl S, Poulikakos D. Experimental investigation of the transient impact fluid dynamics and solidification of a molten microdroplet pile-up[J]. International Journal of Heat and Mass Transfer, 2003(46):535 - 550.

同被引文献53

  • 1刘泽光,陈登权,罗锡明,许昆.微电子封装用金锡合金钎料[J].贵金属,2005,26(1):62-65. 被引量:37
  • 2刘泽光,陈登权,许昆,罗锡明,陈亮维.D-KH法制备金锡合金的组织与结构[J].贵金属,2005,26(3):30-33. 被引量:15
  • 3Liu Q B,Orme M.High precision solder droplet printing technology and the state-of-theart[J].Journal of Materials Processing Technology,2001,115:271-283.
  • 4Hayes D J,Cox W R,Grove M E.Micro-jet printing of polymers and solder for electronics manufacturing[J].Journal of Electronics Manufacturing,1998,8(3-4):209-216.
  • 5Motulla G,Kasulke P,Heinricht K,et al.A low cost bumping process for flip chip technology using electroless nickel and solder ball placement[A].1997 IEMT/ IMC symposium[C].Tokyo:the Organizing Committee,1997.174-181.
  • 6Zeng K,Tu K N.Six cases of reliability study of Pb-free solder joints in electronic packaging technology[J].Materials Science and Engineering,2002,R38:55-105.
  • 7[1]Tammann G, Rocha H J. The diffusion of Tow metals into one another with formation of intermetallic compounds [J]. Z. Anorg. Chem., 1931, 199: 289.
  • 8[2]Dyson B F. Diffusion of gold and silver in tin single crystals [J]. Journal of Applied Physics, 1966, 37: 2375.
  • 9[3]Simi(′)/(c) V, Marinkovi (′)/(c) . Thin film interdiffusion of Au and Sn at room temperature [J]. Journal of Less-Common Metals, 1977, 51: 177.
  • 10[4]Buene L. Characterization of evaporated gold-tin films [J]. Thin Solid Films, 1977, 43: 285.

引证文献5

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部