期刊文献+

胰岛素固体脂质纳米粒的制备及其理化性质研究 被引量:16

Studies on insulin-loaded stearylamine nanoparticles: preparation and physicochemical properties
下载PDF
导出
摘要 目的 制备胰岛素固体脂质纳米粒并考察其理化性质。方法 采用溶剂扩散法制备胰岛素固体脂质纳米粒,考察制备过程中加入多聚阴离子对纳米粒粒径、表面电位和药物包封率的影响;研究载药纳米粒的体外释放特性;荧光标记固体脂质纳米粒经大鼠口服给药,由荧光倒置显微镜观察血液和淋巴液中的荧光强度。结果胰岛素固体脂质纳米粒的平均粒径为(388.6±143.5)nm,水相中加入三聚磷酸钠对纳米粒粒径无明显影响,而表面电位下降,药物包封率明显增加;胰岛素固体脂质纳米粒最初1 h快速释放了药物包封总量的35.63%,随后以接近每小时1.5%的速度释放,呈明显的缓释特征,24 h体外累积释放量为药物包封量的67.30%;固体脂质纳米粒经大鼠口服研究发现,0.5 h时淋巴液中的荧光强度明显高于相同时间血液中的荧光强度。结论 采用溶剂扩散法制备得到的胰岛素固体脂质纳米粒,具有明显的药物缓释作用;通过调节纳米粒表面电位,可明显提高药物的包封率;固体脂质纳米粒口服给药,具有明显的纳米粒整体淋巴吸收特性。 OBJECTIVE: To prepare insulin-loaded solid lipid nanoparticles (INS-SLN) and investigate their physicochemical properties. METHODS: INS-SLN was prepared by solvent diffusion method. The effects of adding polyanion into aqueous phase during preparation on the particle size, Zeta potential and drug entrapment efficiency were investigated. The drug release profile in vitro was evaluated. Fluorescein isothiocyanate (FITC) labeled stearylamine nanoparticles were orally administered to SD rats and the fluorescent intensities of blood and lymph were evaluated by inverted fluorescent microscope. RESULTS: The average size of nanoparticles prepared by solvent diffusion technique was (388.6±143.5) nm. There was no more change on particle size after tripolyphosphate sodium being added into the aqueous phase during preparation. Meanwhile, the Zeta potential of the nanosuspension was decreased and the drug entrapment efficiency was increased. After burst drug release in the first hour, a distinctly prolonged insulin release from the nanoparticles was observed in vitro and nearly 1.5% of the drug was released per hour. About 67.30% of insulin loaded in SLN was released in 24 hours. 0.5 h after oral administration of FITC labeled stearylamine nanoparticles, the fluorescent intensity of the lymph photograph was obviously denser than that of blood. CONCLUSION: INS-SLN prepared by solvent diffusion method showed sustained release manner. The entrapment efficiency could be improved significantly through adjusting the Zeta potential of the nanoparticles. SLN may be a potential new drug carrier for enhancing the intestinal lymph absorption.
出处 《中国药学杂志》 EI CAS CSCD 北大核心 2004年第8期605-607,634,共4页 Chinese Pharmaceutical Journal
关键词 胰岛素 固体脂质纳米粒 制备 理化性质 溶剂扩散法 Amines Blood Diffusion Drug products Ecosystems Lipids Microscopic examination Nanostructured materials Negative ions Organic solvents
  • 相关文献

参考文献12

  • 1Wolfang M, Karsten M. Solid lipid nanoparticles production, characterization and applications[J]. Adv Drug Deli Revs, 2001,47 (2-3):165.
  • 2Yang SC, Lu LF, Cai Y. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain[J]. J Controlled Release, 1999,59 (3) :299.
  • 3Muller PH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art [J] . Eur J Pharm Biopharm, 2000,50 (1):161.
  • 4Yang SC, Zhu JB, Lu Y. Body distribution of camptothecin solid lipid nanoparticles after oral administration [J]. Pharm Res, 1999, 16 (5):751.
  • 5Lippacher A, Muller RH, Mader K. Preparation of semisolid drug carriers for topical application based on solid lipid nanoparticles[J]. Int J Pharm ,2001,214(1-2) :9.
  • 6Roberta C, C asco MR, Patrizia C.Solid lipid nanoparticles (SLN) as ocular delivery system for tobramycin [J]. Int J Pharm, 2002,238 (1 -2):241.
  • 7Foucher SB, Gref R, Pusso P. Design of poly-caprolactone nanospheres coated with bioadhesive hyaluronic acid for ocular delivery[J]. J Controlled Release,2002,83(3) :365.
  • 8Hu FQ, Yuan H, Zhang HH, et al. Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization [J]. Int J Pharm , 2002 , 239 :121.
  • 9潘妍,徐晖,赵会英,魏刚,郑俊民.胰岛素乳酸/羟基乙酸共聚物纳米粒的制备及口服药效学研究[J].药学学报,2002,37(5):374-377. 被引量:27
  • 10孙铭,杜智,孙洪范,方淑昌,周立波,毕海英,宋继昌.胰岛素纳米粒子缓释制剂的实验研究[J].生物医学工程与临床,2001,5(4):188-192. 被引量:3

二级参考文献23

  • 1徐叔云 卞如濂 陈修.药理实验方法[M]:第二版[M].北京:人民卫生出版社,1991.1523-1524.
  • 2[1]Schiffrin A. Treatment of insulin dependent diabetes with multiple subcutaneous insulin injections[J]. Med Clin North Am, 1982,66(6): 1251 - 1267
  • 3[2]Damge C. Nanocapsules as carriers for oral peptide delivery[J]. J Contr Res, 1990,13:233- 239
  • 4[3]Saudek C. Novel forms of insulin delivery[J]. Endocrinol Metab Clin North Am, 1997,26 (3): 599 - 610
  • 5[4]Marina R. Encapsulation of insulin for oral administration preserves interaction of the hormone with its receptor in vitro [ J ]. Diabetes, 1992,41:451 - 456
  • 6[5]Philip J. Calcitonin and insulin in isobutylcyanoacrylate nanocapsules:Protection against proteases and effect on intestinal absorption in rats[J] . J Pharm Pharmacol,1994,46:547- 552
  • 7[6]Christiane D. New approach for oral administration of insulin with polyalkylcyanoacrylate nanocapsules as drug carrier [ J]. Diabetes, 1988,37: 246 - 251
  • 8[7]Calvo P. Novel hydrophilic chitosan- polyethlene oxide nanoparticles as protein carders[J]. J Appl Polymer Science, 1997,63:125- 132
  • 9[8]Dupre J, Champion M, Rodyer NW, et al. Advances in insulin delivery in the management of diabetes mellitus [ J]. Clin Endocrinol Metal,1982,11 (2): 525 - 548
  • 10[9]Damge C. Poly(alkylcyanocrylate) nanospheres for oral administration of insulin[J]. J Pharm Sci, 1997,86(12):1403- 1409

共引文献40

同被引文献160

引证文献16

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部