期刊文献+

平面应变状态下粘性土破坏时的中主应力公式 被引量:22

FORMULA OF INTERMEDIATE PRINCIPAL STRESS AT FAILURE FOR COHERENT SOIL IN PLANE STRAIN STATE
下载PDF
导出
摘要 从平面应变状态下破坏时金属和无粘性土的中主应力公式出发,针对粘性土提出在破坏状态下中主应力s2使(s1-s2)莫尔圆和(s2-s3)莫尔圆有相同的摩擦发挥度和粘性发挥度。首先,推导出了粘性土的中主应力公式,当c,j分别取0时,公式分别退化成金属和无粘性土的形式,然后,得到了平面应变和三轴压缩两种应力状态下强度指标的关系。 Based on the stress state at failure for coherent and frictional materials in plane strain state,it is hypothesized that the intermediate principal stress,s2,makes the Mohr circles of (s1-s2) and (s2-s3) have the same effect degree of cohesion and friction,and then the intermediate principal stress formula at failure for coherent and frictional materials in plane strain state is obtained. When coherence,c,is equal to zero,the formula becomes the one of frictional materials,and when frictional angle,j,is equal to zero,the formula becomes the one of coherent materials. At last,the relationships of strength indexes in plane strain state and those in triaxial compressive state are gained.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2004年第18期3174-3177,共4页 Chinese Journal of Rock Mechanics and Engineering
关键词 土力学 粘性土 平面应变状态 三轴压缩状态 中主应力 soil mechanics,coherent soil,plane strain state,triaxial compressive state,intermediate principal stress
  • 相关文献

参考文献9

二级参考文献20

  • 1刘祖德,孔官瑞.平面应变条件下膨胀土卸荷变形试验研究[J].岩土工程学报,1993,15(2):68-73. 被引量:31
  • 2史宏彦.无粘性土的应力矢量本构模型[M].西安:西安理工大学,2000..
  • 3李树勤.在平面应变条件下砂土本构关系的试验研究[M].北京:清华大学,1982..
  • 4史宏彦.无粘性土的矢量本构模型[M].西安:西安理工大学,2000..
  • 5黄永男.等应力比条件下砂土应力应变关系研究[M].北京:清华大学,1986..
  • 6[1]Matsuoka N. Prediction of plane strain strength for soils from triaxial compression[A]. Proc. of 10th Int. Conf. on Soil Mech. and Found. Eng.[C], Stockholm, 1981,5:682~683.
  • 7[2]Matsuoka H, Nakai T. Stress-deformation and strength characteristics of soil under three difference principal stresses[J]. Proc. of Japan Society of Civil Engineers, 1974,232:59~70.
  • 8[3]Satake M. Stress-deformation and strength characteristics of soil under three difference principal stresses (Discussion)[J]. Proc. of Japan Society of Civil Engineers, 1976,246:137~138.
  • 9[4]Ramamurthy T, Tokhi V K. Relation of triaxial and plane strain strengths[A]. Proc. of 10th Int. Conf. on Soil Mech. and Found. Eng.[C], Stockholm, 1981,1:755~758.
  • 10[5]Kimata T, Uchida K, Hasegawa T. A consideration on the intermediate principal stress of plane strain tests[A]. Proc. 27th Japan National Conf. on SMFE[C], 1992, 693~694.

共引文献107

同被引文献167

引证文献22

二级引证文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部