期刊文献+

最佳拟合非正态过程的质量控制 被引量:4

Estimating Best-Fit Distribution for Non-Normal Data in Quality Control
原文传递
导出
摘要 在企业实际中,存在大量非正态过程。此时,如果直接使用正态技术下的控制图监控过程,将会导致严重的错误。以抽样百分位点选择约翰逊分布函数来拟合非正态数据为基础,分析了许多最佳拟合Johnson曲线并转换为正态分布的方法。然后,提出了最佳拟合对应的最适宜z值的选择程序,以及在这种转换下的控制图技术。案例研究验证了该方法的有效性和实用性。 In practice, there are moments of processes with non-normal distribution. If the normal-based techniques are used on these processes, serious errors can result. In this paper, the methods of fitting non-normal data by Johnson curve family are discussed. Then, in conjunction with the sample percentile, the procedure for selecting the most suitable z in best-fit distribution and the control chart based on this transformation are researched. Finally, the case study verifies that the methods researched are valid and practical.
作者 卓德保
出处 《系统工程理论方法应用》 2004年第4期372-376,共5页 Systems Engineering Theory·Methodology·Applications
基金 国家自然科学基金资助项目(70002007) 航空基金资助项目(00J55005)
关键词 非正态过程 Johnson系统转换 最佳正态拟合 non-normal process Johnson system transformation best-fit
  • 相关文献

参考文献15

  • 1Yourstone S A, Zimmer W J. Nonnormality and the design of control charts for averages[J]. Decision Sciences,1992, 23:1099-1113.
  • 2Farnum N R.Using Johnson curves to describe non-normal process data.[J]. Quality Engineering, 1996, 9(2):329-336.
  • 3Chou Youn-min.Transforming non-normal data to normality in statistical process control [J].Journal of Quality Technology, 1998,30(2):133-141.
  • 4Johnson N L.System of frequency curves generated by methods of translation [J].Biometrika, 1949, 36:149-176.
  • 5Bowman K O, Shenton L R.Johnson's system of distributions [J]. Encyclopedia of Statistical Sciences, 1983,14:303-314.
  • 6Hain G J, Shapiro S S.Statistical models in engineering[M].New York:John Wiley & Sons,1994.
  • 7Johnson N L, Kotz, S, Balakrishnan N.Continuous univariate distribution[M]. New York, John Wiley & Sons,1994.
  • 8S J F, S S S. The Johnson system:select and parameter estimaion [J]. Technometrics, 1980,22:239-246.
  • 9Stuart A, Ord J K. Kendall's advanced theory of statisics (5th ed) [M].New York,Oxford University Press, 1987.
  • 10Siekierski K.Comparision and evaluation of three methods of estimation of the Johnson SB distribution[J].Biometrical Journal, 1992,34:879-895.

二级参考文献1

共引文献9

同被引文献31

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部