期刊文献+

基于关键维的高维空间划分策略 被引量:16

Key Dimension Based High-Dimensional Data Partition Strategy
下载PDF
导出
摘要 索引技术是基于内容的相似性检索的核心内容,而数据的分割则是影响索引性能的关键因素.提出一种高维数据空间分割策略——在距离分割基础上基于关键维的二次分割,以及相应的索引技术.基于关键维的二次分割保证孪生兄弟节点的无重叠性,而在索引中根据选定的关键维进行孪生兄弟节点间的二次过滤,从而增强过滤效率.这种数据分片策略和索引技术使得索引的过滤效率成倍提高.实验结果显示,关键维能够很好地提高索引的相似性检索性能,对于加速基于内容的多媒体信息检索具有很大的意义. Index is one of the core components of content based similarity search and the data partition is the key factor affecting the performance of index. This paper proposes a new data partition strategy-key dimension based partition strategy on the basis of the traditional distance based partition strategy, and the index technique accordingly. The key dimension based data partition eliminates the overlaps between twin nodes, and the filtering between twin nodes by key dimension enhances the filtering ability of index. The data partition strategy and index technique proposed can greatly improve the filtering ability of index. Experimental results show that key dimension can be used to improve the performance of index, which is of great significance for accelerating the content based similarity search.
出处 《软件学报》 EI CSCD 北大核心 2004年第9期1361-1374,共14页 Journal of Software
基金 国家自然科学基金 教育部高等学校优秀青年教师教学科研奖励计划基金~~
关键词 高维索引 度量空间 关键维 范围查询 最近邻查询 Algorithms Data processing Indexing (of information) Trees (mathematics)
  • 相关文献

参考文献12

  • 1[1]Guttman A. R-Trees: A dynamic index structure for spatial searching. In: Yormark B, ed. Proc. of the ACM SIGMOD Conf. Boston,1984. 47~57.
  • 2[2]Berkmann N, Krigel HP. Schneider R, Seeger B. The R*-tree: An efficient and robust access method for points and rectangles. In Hector GM, Jagadish HV, eds. Proc. of the ACM SIGMOD Conf. Atlantic, 1990. 322~331.
  • 3[3]Katayama N, Satoh S. The SR-tree: An index structure for high-dimensional nearest neighbor queries. In: Peckham J, ed. Proc. of the ACM SIGMOD Conf. Tucson, 1997. 369~380.
  • 4[4]White DA, Jain R. Similarity indexing with the SS-tree. In: Stanley YWS, ed. Proc. of the 12th Int'l Conf. on Data Engineering New Orleans: IEEE Computer Society, 1996. 516~523.
  • 5[5]Lin K-I, Jagadish HV, Faloutsos C. The TV-tree: An index structure for high-dimensional data. VLDB Journal, 1994,3(4):517~542.
  • 6[6]Ciaceia P, Patella M, Zezula P. M-tree: An efficient access method for similarity search in metric spaces. In: Jarke M, Carey MJ,Dittrich KR, Lochovsky FH, Loucopoulos P, Jeusfeld MA, eds. Proc. of the 23rd VLDB Conf. Athens: Morgan Kaufmann Publishers, 1997.426~435.
  • 7[7]Bozkaya T, Ozsoyoglu M. Distance-Based indexing for high-dimensional metric spaces. In: Peckham J, ed. Proc. of the ACM SIGMOD Conf. on Management of Data Tucson, 1997. 357~368.
  • 8[8]Ishikawa M, Chen H, Furuse K, Yu JX, Ohbo N. MB+tree: A dynamically updatable metric index for similarity search. In: Lu HJ,Zhou AY, eds. Proc. of the 1st Int'l Conf. on Web Age Information Management Lecture Notes in Computer Science 1846,Springer-Verlag, 2000. 356~373.
  • 9[9]Jr CT, Traina A, Seeger B, Faloutsos C. Slim-Trees: High performance metric trees minimizing overlap between nodes. In: Zaniolo C, Lockemann PC, Scholl MH, Grust T, eds. Proc. of the 7th Int'l Conf. on Extended Database Technology. Lecture Notes in Computer Science 1777, Konstanz: Springer-Verlag, 2000. 51~65.
  • 10[10]Zhou XM, Wang GR, Yu G. A research of index methods in metric space. Computer Science, 2002,29(B):265~267 (in Chinese with English abstract).

同被引文献114

引证文献16

二级引证文献125

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部