摘要
Hedges及Kirby等的非线性弥散关系及其修正式在浅水区小波陡时存在较大误差 ,李瑞杰等针对这个问题给出了新的非线性弥散关系式。本文通过对各种非线性弥散关系计算分析可知 ,由李瑞杰等提出的非线性弥散关系除了具有Hedges ,Kirby和Dalrymple等人提出的非线性弥散关系及修正式的优点外 ,还能大大地减小在小波陡相对水深为 1<kh <1.5时的误差 。
The nonlinear dispersion relations and Hedges have greater errors for small wave steep-nesses in shallow waters. To overcome this shortcoming, improved nonlinear dispersion relations are proposed by Li Ruijie. Based on summarization and comparison of the nonlinear dispersion relations given by Kirby, Hedges and Li, it can be found that the improved nonlinear dispersion relations given by Li not only retain the advantages of those by Hedges, Kirby and Dalrymple, but also significantly reduce relative errors in the range of relative water depth 1<kh<1.5.
出处
《海洋湖沼通报》
CSCD
2004年第3期1-5,共5页
Transactions of Oceanology and Limnology
关键词
波浪
非线性弥散关系
修正
弥散关系
计算分析
海洋学
wave
nonlinear dispersion relation
modified dispersion relation
calculate and analyze