期刊文献+

低温等离子体增强化学气相沉积技术制备碳纳米管 被引量:3

Growth of carbon nanotube by PECVD
原文传递
导出
摘要 由于等离子体在低温下具有高活性的特点 ,等离子体增强化学气相沉积 (PECVD)技术可显著降低薄膜沉积的温度范围。通常条件下 ,高质量碳纳米管的生长要求 80 0℃以上的基片温度 ,若能使该温度降到4 0 0℃以下 ,则对许多应用非常有利 ,如可以在玻璃基片上沉积碳纳米管场发射电极。目前 ,碳纳米管基纳电子器件的研制这一课题备受关注 ,如果能实现低温原位制备碳纳米管 ,则可能将纳电子器件与传统的微电子加工工艺结合并实现超大容量的超大规模集成电路。本文主要介绍近年来生长碳纳米管所采用的各种等离子体化学气相沉积技术 。 Because of plasma's high activity at low temperature, plasma enhanced chemical vapor deposition (PECVD) technique has been used to deposit thin films at considerably low substrate temperature. Generally, high quality carbon nanotube(CNT)'s growth requires a substrate temperature higher than 800℃. If the temperature could be lower than 400℃, it will be beneficial to many applications, eg., to deposit CNT emitter on glass substrates for FED (field emission display) devices. Nowadays, CNTs based on electronic devices have attracted much attention. If a low temperature in-situ growth of CNT could be realized, the combination of nano-devices with traditional process of microelectronic device will be able to realize a ultra-high capacity and ultra large scale integrated circuit (ULSI). Some PECVD techniques used to synthesize CNT at low temperature have been reviewed with some key factors of the synthesis process discussed.
出处 《真空》 CAS 北大核心 2004年第4期40-46,共7页 Vacuum
关键词 等离子体增强化学气相沉积 PECVD 制备 碳纳米管 低温生长 PECVD(plasma enhanced chemical vapor deposition) low temperature growth carbon nanotube
  • 相关文献

参考文献7

  • 1Rinzler A G,Hafner J H,Nikolaev P,et al.[J].Science 1995(269):1550
  • 2De Heer W A,Chatelain A,Ugarte D.[J].Science 1995,270:1179
  • 3Tans S J,Verschueren A R,Dekker C.[J].Nature 1998(393):49.
  • 4Poqtma H W,Teepen T,Yao Z,et al.[J].Science 2001(293):76.
  • 5Li J,Ye Q,Cassell A,et al.[J].Appl.Phys.Lett.2003(82):2491.
  • 6Ren Z F,Huang Z P,Xu S W,et al.[J].Science 1998(282):1105.
  • 7Hash D B,Meyyappan M.[J].J.Appl.Phys.2003(93):750.

共引文献1

同被引文献26

  • 1赵艳珩,曾葆青,赵约瑟,张文锋,田浩希.定向碳纳米管薄膜的制备[J].材料导报,2006,20(F05):112-113. 被引量:3
  • 2周小康,周明,吴春霞,袁润.定向生长碳纳米管阵列的制备及其应用研究进展[J].材料导报,2007,21(F05):95-98. 被引量:5
  • 3Chen Y, Patel S, Ye Y, David T, Shaw. Field emission from aligned high-density graphitic nanofibers [J]. Appl. Phys. Lett., 1998, (73): 2119-2121.
  • 4Busta H H, Espinosa R J, Rakhimov A T, Suetin N V. Performance of nanocrystalline graphite field emitters[J]. Solid State Electronics, 2001, (45): 1039-1047.
  • 5Ito T, Watanabe T, Irie M, Nakamura J, Teraji T. Electron emissions from CVD diamond surfaces[J]. Diamond and Related Materials, 2003, (12): 434-441.
  • 6Foulani A. Electronic behaviour and field emission of metal-semiconductor-insulator-metal (MSIM) heterostructures base on a-C:H films[J]. Applied Surface Science, 2003, (206): 294N299.
  • 7Lau S P, Li Y J, Tay B K, Sun Z, Chen G Y, Chen J S, Ding X Z. Field emission from metal-containing amorphous carbon composite films[J]. Diamond and Related Materials, 2001, (10): 1727-1731.
  • 8Mukul Kumar, Maheshwar Sharon, Yoshinori Ando, Xinluo Zhao. Electron field emission from carbon films grown from pyrolysis of kerosene[J]. Diamond and Related Materials, 2001, (10): 883-888.
  • 9Iijima S.Helical microtubules of graphitic carbon[J].Nature,1991,354.56.
  • 10Zexiang Chen,Guichuan Cao,Qiang Zhang,et al.Large current carbon nanotube emitter growth using nickel as a buffer layer[J].Nanotechnology,2007,18.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部