期刊文献+

Copulas于二维样本极值概率积分变换分布分析中的应用

Employment of Copula in the Analysis Involving BIPIT of Extreme Value Samples
下载PDF
导出
摘要 借助于Copula这一工具对在具有联合分布H(x,y)的二维总体(X,Y)经概率积分变换得到的随机变量H(X,Y)的分布函数K(V)给定条件下,求出关于次序统计量X(n)=max{X1,X2,…,Xn}和Y(n)=max{Y1,Y2,…,Yn}经概率积分变换得到的随机变量Hn(X(n),Y(n))的分布函数Kn(v)的方法进行了研究,并找出了Kn(v)不随样本容量n变化的情形,进而得到了较准确地刻画二维R.V相依性的相关性指标Kendall'sτ. Shows the approachs of finding the distribution function K_n(v) corresponding to the bivariate probability integral transformation(BIPIT) of pairs (X_((n)),Y_((n))) given the distribution function K(V) of random variable H(X,Y) obtained by taking the BIPIT of a random pair(X,Y)with distribution function (H(X,Y).where) X_((n))=max{X_1,X_2,…,X_n}and Y(n) max{Y_1,Y_2…,Y_n}, illustrate the conditions of invariability of (K_n(v)).Furthermore, obtained the Kentall's τ which can characterize the dependence orderings exactly.
出处 《河北大学学报(自然科学版)》 CAS 2004年第5期464-467,471,共5页 Journal of Hebei University(Natural Science Edition)
关键词 COPULA 概率积分变换 相依性 分布函数 极值Copula Kendall’s τ Copula probability integral transform dependence orderings distribution functions extreme value copula Kendall's τ
  • 相关文献

参考文献4

  • 1NELSEN R B. An introduction to copulas[J]. Lecture Notes in Statistics, 1999,139:391 - 399.
  • 2NELSEN. Distribution function of copulas: a class of BIPIT[J]. Statistics & Probability Letters, 2001,54: 277 - 282.
  • 3GALAMBOS J. The asymptotic theory of extreme order statistics[M]. New York :Krieger Malabar Academic Press. 1987.
  • 4ROGER B, NELSEN. Bounds on bivariate distribution functions with given margins and measures of association [J ]. Commun Statist-Theory Meth, 2001,30(6): 1155 - 1162.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部