期刊文献+

心肌细胞团搏动整数倍节律的非线性动力学机制 被引量:5

NONLINEAR DYNAMIC MECHANISMS OF THE INTEGER MULTIPLE RHYTHMS GENERATED BY CARDIAC MYOCYTES
下载PDF
导出
摘要 利用心肌细胞耦合模型研究心肌整数倍节律的动力学机理。确定性模型仿真揭示了心肌细胞团同步搏动加周期分岔的节律变化规律;随机模型仿真发现在加周期分岔序列中分岔点附近会出现整数倍节律,其中,0-1整数倍节律产生于从静息到周期1的Hopf分岔点附近,1-2整数倍节律产生于周期1和周期2极限环间的加周期分岔点附近;对系统相空间轨道的分析进一步揭示出整数倍节律是由系统运动在相邻的两个轨道之间随机跃迁形成的。上述分析结果不仅阐明了心肌整数倍节律的机理,并且揭示了各种整数倍节律与加周期分岔序列中相邻节律的内在联系,为重新认识心律变化的规律开辟了新的途径。 Coupled models of cardiac myocytes were used to investigate the mechanisms of integer multiple rhythms discovered experimentally. Simulation in the deterministic model elucidated a rhythm transition process governed by a period adding bifurcation scenario. Simulation using the stochastic model further revealed that integer multiple rhythms occurred near each of the bifurcation points in the bifurcation scenario. The 0-1 integer multiple rhythm appeared near the Hopf bifurcation point, while the 1-2 integer multiple rhythm appeared near the period adding bifurcation point between two limit cycles. The analysis of the phase space trajectories clearly elucidated that the integer multiple rhythms were formed by a stochastic alternating of the system between two neighbouring orbits. Such theoretical analysis not only revealed the dynamic mechanism of the integer multiple rhythms, but also elucidated the relations of the integer multiple rhythms with other rhythm patterns within the context of a period adding bifurcation scenario. Our experimental and theoretical works created a new way for the study of the principles of the cardiac rhythm transitions.
出处 《生物物理学报》 CAS CSCD 北大核心 2004年第5期363-370,共8页 Acta Biophysica Sinica
基金 总装备部试验技术重点项目(01103302)
关键词 心肌细胞团 整数倍节律 Chay模型 耦合 加周期分岔 Cardiac myocytes Integer multiple rhythms Chay model Coupling Period adding bifurcation
  • 相关文献

参考文献23

  • 1[1]Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol, 1952,117:500~544
  • 2[2]Beeler G, Reuter H. Reconstruction of the action potential of ventricular myocardial fibers. J Physiol Lond, 1977,268177~210
  • 3[3]DiFrancesco D, Noble D. A model of cardiac electrical activity incorporating ionic pumps and concentration changes.Philos. Trans R Soc Lond B Biol Sci, 1985,307:353~398
  • 4[4]Chay TR. Chaos in a three-variable model of an excitable cell. Physic D, 1985,16:233~242
  • 5[5]Elber T, Ray WJ, Kowalik ZJ, Skinner JE, Graf KE. Chaos and physiology: deterministic chaos in excitable cell assemblies. Physiological Reviews, 1994,74:1~47
  • 6[6]Aihara K, Matsumoto G, Ichikawa M. An alternating periodic-chaotic sequence observed in neural oscillators.Physics Letters, 1985,16:251~255
  • 7[7]Glass L, Guevara MR, Shrier A. Bifurcation and chaos in a periodically stimulated cardiac oscillator. Physica D, 1983,7:89~101
  • 8[8]Nearing BD, Huang AH, Verrier RL. Dynamic tracking of cardiac vulnerability by complex demodulation of the T-wave. Science, 1991,252:437~440
  • 9于洪洁,吕和祥.小参数干扰反馈控制动力系统中混沌运动[J].大连理工大学学报,2003,43(2):132-135. 被引量:9
  • 10[11]Cohen N, Soen Y, Braun E. Spatio-temporal dynamics of networds of heart cell in culture. Physica A, 1998,249:600~604

二级参考文献24

  • 1[1]OTT E, GREBOGI C,YORKE J A. Controlling chaos [J]. Phys Rev Lett,1990,64(11):1196-1199.
  • 2[2]BISHOP S R, XU D. Flexible control using chaotic dynamics [A]. Proceedings of 10th International Conference On System Engineering [C]. Coventry:[s n],1994.
  • 3[3]XU D, BISHOP S R. Self-locating control of chaotic system using Newton algorithm [J]. Phys Lett:A,1996,210:273-278.
  • 4[4]SHINBROT T, GREBOGI C, OTT E, et al. Using small perturbations to control chaos [J]. Nature, 1993,363:411-417.
  • 5[5]GREBOGI C, OTT E, YORKE J A. Unstable periodic orbits and the dimensions of multifractal chaotic attractors [J]. Phys Rev: A,1988,37(5):1711-1724.
  • 6[6]CHEN Yushu, ANDREW Y T. Bifurcation and Chaos in Engineering [M]. Berlin: Springer-Verlag, 1998.
  • 7Rcn W, Hu S J, Zhang B J, Xu JX, Gong YF. Period-adding bifurcation with chaos in the interspike intervals generated by an experimental neural pacemaker, Int J Bifurcation Chaos, 1997,7:1867-1872.
  • 8Ren W, Gu HG, Jian Z, Lu QS, Yang MH, Different classification of UPOs in the parametrically chaotic ISI series of the neuronal pacemaker, NeuroReport, 2001,12(10):2121-2124.
  • 9Siegel RM. Nonlinear dynamical system theory and primary visual cortical processing. Phys D, 1990,42:385.
  • 10Rose JE, Brugge JF, Arderson DD, Hind JE. Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol, 1967,30:769.

共引文献14

同被引文献58

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部