期刊文献+

磺化间规聚苯乙烯的合成及质子导电性能 被引量:2

SYNTHESIS AND PROTON CONDUCTIVITY OF SULFONATED SYNDIOTACTIC POLYSTYRENE
下载PDF
导出
摘要 合成了不同磺化度的磺化间规聚苯乙烯(SsPS),用红外光谱等方法确证了SsPS中磺酸基团的对位取代。研究了SsPS的吸水性及其非水膜的导电性与磺化度和温度的关系,SsPS膜中水的含量对导电性的影响,并对SsPS的含水膜和非水膜表面进行了扫描电镜分析。实验结果表明,SsPS非水膜的电导率非常低,SsPS非水膜的电导率和吸水性都随磺化度的增大而增强。在不同的磺化度下,SsPS膜的导电性随温度有不同的变化规律,磺化度较低时符合Arrhenius方程,而磺化度较高时则偏向VTF方程,SsPS吸水达平衡后的膜相对于非水膜的电导率增长了三个数量级。 Sulfonated syndiotactic polystyrene (SsPS) with different degree of sulfonation (DS) has been synthesized. Para-position substitution of sulfonate group was confirmed by Infrared Spectroscopy. The relationship between water uptake and DS was investigated. Conductivity of SsPS membrane with or without water was studied. Scanning Electron Microscope (SEM) was also used to investigate the surface of the membrane. It is found that water uptake and conductivity of anhydrous membrane increase with increasing DS, though the conductivity of anhydrous membrane is very low. When DS is low, the relationship between conductivity and temperature follows Arrhenius law, while membrane with higher DS follows VTF equation. Water in the membrane can help to increase the conductivity of the membrane.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2004年第4期73-76,共4页 Polymer Materials Science & Engineering
基金 教育部留学回国人员科研启动基金 国家自然科学青年基金资助项目(50103009)
关键词 磺化间规聚苯乙烯 合成 质子导电性能 SsPS 磺化度 吸水性 syndiotactic polystyrene sulfonation degree of sulfonation water uptake proton conductivity
  • 相关文献

参考文献13

  • 1[1]Carretta N, Tricoli V, Picchioni F. J. Membrane Science, 2000, 166: 189.
  • 2[2]Yeo R S, Yeager H L. Mod. Aspects Electrochem.,1985, 16: 437.
  • 3[3]Yeager H L, Kipling B. J. Electrochem. Soc., 1979,83: 1836.
  • 4[4]Yeager H L, Steck A. J. Electrochem. Soc, 1991,128: 1880.
  • 5[5]Zawodzinski T A, Springer T E, Davery J, et al. J.Electrochem. Soc. , 1993, 140: 1981.
  • 6[8]Li H M, Liu J C, Zhu F M, et al. Polym. International, 2001, 50: 421.
  • 7[9]Bruce O E, Moore R B. Macromol. , 1994, 27: 4774.
  • 8[10]Bruce O E, Yontz D J, Moore R B. Macromol. , 1993,26: 5157.
  • 9[11]Su Z H, Li X, Shaw Ling Hsu. Macromol., 1994, 27:287.
  • 10[12]Bruce O E, Calhoun B H. , Moore R B. Macromol. ,1996, 29: 5965.

同被引文献48

  • 1杨敏,丁会利,闫卫东.间规聚苯乙烯的改性研究[J].广州化学,2003,28(3):53-57. 被引量:7
  • 2Appleby A J. Fuel Cell System[M]. New York: Plenum Press,1993.
  • 3Ren X, Wilson M S, Gottesfeld S. High performance direct methanol polymer electrolyte fuel cells[J]. J Electrochem Soc,1996, 143(1): 12 - 15.
  • 4Argyropoulos P, Scott K, Taama W M. Carbon dioxide evolution patterns in direct methanol fuel cells [J]. Electrochimica Acta. 1999, 44(20): 3575 - 3584.
  • 5Dohle H, Divisek J, Mergel J, et al. Recent developments of the measurement of the methanol permeation in a direct methanol fuel cell [J]. J Power Sources. 2002. 105 (2) : 274 - 282.
  • 6Wang J T, Wasmus S, Savinell R F. Real- time mass spectrometric study of the methanol crossover in a direct methanol fuel cell[J]. J Electrochem Soc, 1996, 143(4): 1233 - 1239.
  • 7Pivovar B S, Wang Y X, Cussler E L. Pervaporation membranes in direct methanol fuel cells[J]. J Membrane Sci, 1999,154(2): 155 - 162.
  • 8Tricoli V. Proton and methanol transport in poly(perfluorosulfonate) membranes containing Cs^+ and H^+ cations[J]. J Electrochem Soc, 1998, 145(11): 3798 -3801.
  • 9Samma S R, Wasmus S, Savinell R F. Thermal stability of Nation in simulated fuel cell environments[J]. J Electrochem Soc,1996, 143(5): 1498 - 1504.
  • 10Verdrugge M W. Methanol diffusion in perfluorinated ion -conducting membranes[J]. J Electrochem Soc, 1989, 136(2): 417.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部