期刊文献+

纤维增强复合材料的力学性能预测的数值模拟 被引量:6

NUMERICAL SIMULATION AND PREDICTION OF MECHANICAL PROPERTIES OF FIBER REINFORCED COMPOSITES
下载PDF
导出
摘要 纤维增强复合材料的力学性能和热物理性能依赖于纤维的取向状态。在注射成型过程中纤维最终的取向状态依赖于充填过程的速度场 ,因此最终的产品性质依赖于成型的详细过程。研究发现 ,注塑成型制品的结构呈层状分布 ,层数依赖于模具几何和成型条件 ,不过大多数的结构在成型表面为沿流动方向取向 ,而在中心层为横向排列 ,有时在制件表面还有一层薄的介于二者之间排列的取向层。本文主要给出两个简单模型中纤维取向预测的理论和数值方法 ,这两个模型分别为 :中心浇口圆盘和边浇口长条。 The mechanical and thermal physic properties depend strongly on the fiber orientation state during injection molding process. The final orientation of the fiber depends on the velocity field during mold filling .So the properties of the finished part depend on the details of the molding process. According to the result of the research, the structure of inection moldings has been found to be layered. The mumber of layers appears to depend on the mold geometry and processing condition. But most structures show flowed-aligned shell layers near the surface of the molding with a transversely aligned core layer at the midplane. Sometimes, a thin skin layer at the outer surfaces has an orientation in between that of core and shell layers.In this paper, we set out the theory and numerical methods to predict fiber orientation appling to two simple patterns. The patterns are a film gated strip and a center gated disk.
出处 《玻璃钢/复合材料》 CAS CSCD 2004年第4期7-10,共4页 Fiber Reinforced Plastics/Composites
基金 河南省教育厅自然科学研究项目 ( 2 0 0 3 43 0 2 0 7) 河南省高校青年骨干教师资助
关键词 纤维增强 复合材料 力学性能 数值模拟 取向张量 闭舍近似 纤维取向 orientation tensor closed approximation simulating prediction fiber orientation
  • 相关文献

参考文献4

  • 1Randy S.Bay and Charles LTucker. Fiber orientation in simple injection moldings[J]. polymer Composites,1992,13(4).
  • 2Tadmor Z,Broyer E,Gutfinger C.Flow analysis network(FAN)-a method for solving flow problems in polymer processing [J].Polym Eng Sci,1974(14):660.
  • 3Hiber C A,Shen S F. A finite-element/finite-difference simulation of the injection-molding filling process[J], Journal of Non-Newtonian Fluid Mechanics,1980,7(1):1.
  • 4Goldberg DE. Gas in Search, Optimization and Machine Learning[M].Addison Wesley,198.

同被引文献64

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部