期刊文献+

信号调制色泵噪声和实虚部间关联量子噪声驱动下单模激光的随机共振现象 被引量:16

Stochastic resonance in a single-mode laser driven by the colored pump noise with signal modulation and the quantum noise with cross-correlation between the real and imaginary parts
原文传递
导出
摘要 计算了受信号调制的色泵噪声和实虚部间关联的量子噪声驱动的单模激光损失模型的输出光强信噪比 .发现信噪比R随泵噪声自关联时间τ、调制信号频率Ω和量子噪声实虚部间关联系数λq 的变化均存在随机共振 ,这种现象扩展了“信噪比R对噪声强度的变化曲线具有极大值”的典型随机共振 .若以Ω为参数 ,当Ω增加时 ,R随τ的关系曲线经历了从同时出现共振和抑制到单峰共振 ,最后到单调上升的变化 ,呈现多种形式的随机共振 .若以τ为参数 ,当τ增加时 ,R随Ω的关系曲线经历了从单调上升到同时出现共振和抑制 ,最后又到单调下降的变化过程 .R随λq We present an analytic investigation of the signal_to_noise ratio of output intensity in a loss_noise model of a single_mode laser system driven by the colored pump noise with signal modulation and the quantum noise with cross_correlation between the real and imaginary parts. Stochastic resonance (SR) in the curve of signal_to_noise ratio R versus the pump noise self_correlation time τ ,signal frequency Ω ,and cross_correlation coefficient between the real and imaginary parts of the quantum noise λ q are found. It extends the conclusion of the typical SR,that is, \!there is a maximum in the curve of R vs noise intensity\'. Moreover,we detect that,when the parameter Ω increases,the shape of the R τ curve will exhibit a change process of multiform SR: the curve experienced from simultaneous existence of resonances and suppressions to single_peak SR and finally to the monotonous rise. And when the parameter τ increases,the shape of the R Ω curve also exhibit a change process of multiform SR: the curve experienced from the monotonous rise to the simultaneous existence of resonances and suppressions and finally to the monotonous descending. For the R λ q curve,it appears an acute single_peak form.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2004年第8期2556-2562,共7页 Acta Physica Sinica
基金 国家自然科学基金 (批准号 :10 2 75 0 2 5 ) 湖北省教育厅重点科研项目 (批准号 :0 3A0 0 1)资助的课题~~
关键词 信噪比 随机共振 信号调制 自关联时间 色泵噪声 量子噪声 单模激光 激光物理 noise, signal_to_noise ratio, stochastic resonance
  • 相关文献

参考文献21

  • 1[1]Benzi R,Sutera A, Vulpiani A 1981 J. Phys. A 14453
  • 2[2]Liang Q Y,Cao L, Wu D J 2003 Chin. Phys. 12 1105
  • 3[3]Hu G,Nicolis G, Nicolis C 1990 Phys. Rev. A 42 2030
  • 4[4]Tessone C J,Wio H S, Hanggi P 2000 Phys. Rev. E 62 4623
  • 5[6]Hu G, Ditzinger T, Ning C Z et al 1993 Phys. Rev. Lett. 71 807
  • 6[7]Osipov V V, Ponizovskaya E V 2000 Phys. Lett. A 271 191
  • 7[8]Dhara A K, Mukhopadhyay T 1999 Phys. Rev. E 60 2727
  • 8[9]Fulinski A, Gora P F 1999 J. Stat. Phys. 101 483
  • 9[10]Rosario N,Mantegna N,Spagnolo B et al 2001 Phys. Rev. E 6311101
  • 10[11]Vilar J M G, RubiJM1997Phys. Rev. Lett. 78 2882

同被引文献149

引证文献16

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部