期刊文献+

基于RBF神经网络的免疫控制器结构 被引量:2

The Structure of the Immunocontroller Based on RBF Neural Networks
下载PDF
导出
摘要 从T细胞介导的免疫过程出发,通过对其数学模型的简化,利用RBF神经网络构造了一种基于生物系统免疫反馈机理的控制器.该控制器以正反馈模拟免疫激励,提高了系统的快速性;以负反馈模拟免疫抑制,增强了系统的稳定性和鲁棒性.文中对于一类仿射非线性系统证明了其作为控制器时的系统闭环稳定性.仿真实验表明,该控制器对系统的噪声具有很好的抑制能力. Basing on the course of immunity mediated by T lymphocyte, we have constructed a new controller structure based on the immune feedback mechansim of biological immune systems by simplifying the mathematical model of the immune mediated by Tlymphocyte and using the RBF neural network. We used positive feedback to simulate the process of immunologic enhancement for improving the speediness of the system and used negative feedback to simulate the process of immunological suppression for improving the stability and robustness. As a feed-forward controlled of a kind of affine nonlinear systems, the stability was proved in this paper. Computer simulation results demonstrated that the suppression ability of the controller against the system's noise is satisfactory.
出处 《应用科学学报》 CAS CSCD 2004年第3期388-391,共4页 Journal of Applied Sciences
基金 国家自然科学基金重点资助项目(60234010)
关键词 RBF神经网络 免疫控制器结构 免疫反馈 鲁棒性 T细胞介导 immune immune feedback immunocontroller robustness RBF neural networks
  • 相关文献

参考文献8

  • 1[2]Kim D H. Tuning of a PID controller using immune network model and fuzzy set [A]. Industrial Electronics, 2001. Proceedings[C]. ISIE2001. IEEE International Symposium on, 2001. 3:1656- 1661.
  • 2[3]Kim D H. Tuning of 2-DOF PID controller by immune algorithm. Evolutionary Computation [A].2002. CEC′ 02 [ C]. Proceedings of the 2002 Congress on, 2002. 1: 675- 680.
  • 3[4]Sasaki M, Kawafuku M, Takahashi K. An immune feedback mechanism based adaptive learning of neural network controller[A]. Neural Information Processing, 1999. Proceedings. ICONIP ′99. 6th International Conference[C]. 1999.2: 502- 507.
  • 4[5]Ding Y, Ren L. Fuzzy self-tuning immune feedback controller for tissue hyperthermia [A ]. Fuzzy Systems, 2000. FUZZY IEEE 2000. The Ninth IEEE International Conference on, Volume: 1[C]. 2000.1:534-538.
  • 5[6]Ding Yongsheng. A nonlinear PID controller based on fuzzy-tuned immune feedback law. Intelligent control and automation[A]. 2000. Proceedings of the 3rd World Congress on, Volume: 3[C]. 2000.3: 15761580.
  • 6[7]Tang Z, Yamaguchi T, Tashima K, et al. Multiplevalued immune network model and its applications [A]. 27th International Symposium on MultipleValued Logic (ISMVL ′97)[C]. CANADA ,May 28-30, 1997. 233.
  • 7[8]Guillaume A M. Sampled-data adaptive control of nonlinear dynamical systems using neural networks [ J]. International Journal of control, 1994, 60 (4):569-584.
  • 8[9]Naira Hovakimyan, Flavio Nardi, Nakwan Kim, et al. Adaptive output feedback control of uncertain systems using single hidden layer neural networks [J]. IEEE Transactions on Neural Networks, 2002,13 (6): 1420- 1431.

同被引文献26

  • 1付冬梅,郑德玲,位耀光,周颖,鞠磊.人工免疫控制器的设计及其控制效果的仿真[J].北京科技大学学报,2004,26(4):442-445. 被引量:25
  • 2李晔,刘建成,沈明学.Dynamics model of underwater robot motion control in 6 degrees of freedom[J].Journal of Harbin Institute of Technology(New Series),2005,12(4):456-459. 被引量:18
  • 3蔡自兴.智能控制[M].北京:电子工业出版社,2004..
  • 4Takahashi K,Yamada T.Application of an immune feedback mechanism to control systems[J].JSME Int J,SeriesC (S1344-7653),1998,41(2):184-191.
  • 5Kim D W.Intelligent tuning of a PID controller for multivariable process using immune network model based on fuzzy set[C]//The 10th IEEE International Conference on Fuzzy Systems (ISBN0-7803-7090-2),2001:93-98.
  • 6Kim D W,Cho J H.Intelligent Tuning of PID Controller With Disturbance Function Using Immune Algorithm[C]//8th International Conference on Knowledge-Based Intelligent Information & Engineering System KEMS (ISBN0-7803-8376-1),2004:57-63.
  • 7Kim D W.Intelligent 2-DOF PID Control for Thermal Power Plant Using Immune Based on Multiobjective[J].Neural Network and Computational Intelligence (ISBN0-8898-6347-4),2003:215-220.
  • 8Fu Dongmei,Zheng Deling,Chen Ying.Design and Simulation of a Biological Immune Controller Based on Improved Varela Immune Network Model.Artificial Immune Systems[C]//4th International Conference,ICARIS 2005.Proceedings (Lecture Notes in Computer Science Vol.3627) (ISBN 3-540-28175-4),2005,432-441.
  • 9付冬梅,郑德玲,位耀光.一种双因子人工免疫控制器的实现与特性研究[C]//中国控制与决策学术年会,2005.
  • 10王冀程,祝和云.化工过程控制工程[M].北京:化学工业出版社.1991.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部