期刊文献+

执行功能与数量加工:回顾与展望 被引量:34

Executive Function and Number Processing: A Review
下载PDF
导出
摘要 回顾了执行功能与数量加工之间的复杂关系。其中,执行功能的4个子系统——抑制、转换、刷新和双任务协调对数量加工的影响各不相同:抑制可以在一定程度上改变数量加工时的自动激活程度;转换功能则主要依赖注意来进行调节;刷新与数量加工关系的研究成果比较少;而双任务协调与数量加工之间的联系存在争论。文章最后分3个方面进行了研究趋势的展望,认为未来执行功能与数量加工的研究将突破相关研究的局限,通过更精巧的设计和大量特殊被试的研究取得突破性进展。 This paper discussed the relationship between executive function and its subcomponents, including inhibition, shifting, updating and dual task, and the number processing. The state of art concerning the study of relations between these four subcomponents and the number processing was found to be different: inhibition is repeatedly found to modulate the automatic number processing; shifting is found to relay on attention to influence the number processing; studies connecting updating with the number processing, however, is few; and controversies also exists for the relations between dual task coordination and the number processing. We believe that in future research the correlational studies will be aided more and more by causal studies with dedicated designs, the brain mechanisms underlying the connections between executive functions and the number processing will figure more and more prominently, and the special populations with deficits in the number processing will attract more and more attention.
出处 《心理科学进展》 CSSCI CSCD 北大核心 2004年第5期714-722,共9页 Advances in Psychological Science
基金 国家攀登计划(批准号:95-专-09) 教育部科学技术重点项目基金 (01002 02170) 中国科学院知识创新工程方向性项目(KGCX2-SW-101)的资助。
关键词 执行功能 数量加工 抑制 转换 executive function, number processing, inhibition, shifting.
  • 相关文献

参考文献31

  • 1刘昌,李德明.心算活动机制的研究[J].心理学报,1999,31(1):111-117. 被引量:18
  • 2耿柳娜,陈英和.数学认知模型评介——加法事实存储与提取[J].心理科学,2003,26(2):224-227. 被引量:2
  • 3南云,罗跃嘉.数字加工的认知神经基础[J].心理科学进展,2003,11(3):289-295. 被引量:17
  • 4[6]Funahashi S. Neuronal mechanisms of executive control by the prefrontal cortex. Neurosci Res,2001,39:147~165
  • 5[7]Geary D C, Brown S C, Samaranayake V A. Cognitive addition: A short longitudinal study of strategy choice and speed-of -processing differences in normal and mathematically disabled children. Developmental Psychology, 1991, 27: 787~797
  • 6[8]Miyake A, Friedman N P, Emerson M T, Witzki A H, Howerter A. The unity and diversity of executive functions and their contributions to complex 'frontal lobe' tasks : a latent variable analysis . Cognitive Psychology , 2000,41: 49~100
  • 7[9]Collette F, Van der Linden M . Brain imaging of the central executive component of working memory . Neuroscience and Biobehavioral Reviews , 2002 , 26: 105~125
  • 8[10]Morris N, Jones D M. Memory updating in working memory: The role of the central executive. British Journal of Psychology, 1990, 81: 111~121
  • 9[11]Rabbitt P. Introduction: methodologies and models in the study of executive function. In: Rabbitt, P. (Ed.), Methodology of frontal and executive function. Psychology Press, Hove, East Sussex, UK, 1997. 1~38
  • 10[12]Dehaene S, Bossini S, Giraux P. The mental representation of parity and number magnitude. Journal of Experimental Psychology:General, 1993, 122: 371~396

二级参考文献46

  • 1Wynn IC Psychological foundations of number: numerical competence in human infants. Trends in Cognitive Sciences, 1998, 2: 296-303.
  • 2Dehaene S. Cerebral bases of number processing and calculation. In: M S Gazzaniga ed. The New Cognitive Neurosciences. Cambridge, Massachusetts. London, England. The MIT Press, 2000. 1013-1022.
  • 3Dehaene S, Akhavein R. Attention, automaticity, and levels of representation in number processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1995, 21(2): 314-326.
  • 4Fuson K C. Childrens Counting and Concepts of Number. New York: Springer-Verlag, 1988.
  • 5Dehaene S. Varieties of numerical abilities. Cognition, 1992, 44( 1-2): 1-42.
  • 6McCloskey M. Cognitive mechanisms in numerical processing: evidence from acquired dyscalculia. Cognition, 1992, 44:107-157.
  • 7Dehaene S, Spelke E, Pine1 P. et al. Sources of mathematical thinking: behavioral and brain-imaging evidence. Science, 1999, 284: 970-974.
  • 8Dehaene S, Bossini S, Giraux E The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 1993, 122:371-396.
  • 9Groen G J, Parkman J M. A chronometric analysis of simple addition. Psychological Review, 1972, 79:329-343.
  • 10Gallistel C R, Gelman R. Preverbal and verbal counting and computation. Cognition, 1992, 44:43-74.

共引文献34

同被引文献471

引证文献34

二级引证文献246

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部