期刊文献+

基于RBF神经网络的冗余度机器人轨迹规划 被引量:5

The Path Planning of Redundant Robot Based on BF Neural Network
下载PDF
导出
摘要 利用D-H方法完整地推导出了机器人的运动学方程,并将由此得到的运动学正解作为训练样本,对利用RBF神经网络方法建立的机器人运动学神经网络模型进行训练,实现了机器人从工作空间到关节空间的非线性映射,求解了机器人的逆解,并对3R,4R,5R和6R机器人的运动轨迹规划进行了计算机仿真,验证了该方法的可行性。 In this paper, a kinematics equation has been deduced, Based on Denavit-Hartenberg method. The kinematics solution getting from it being training sample, and training using RBF to realize non-liner image from working space to joints space and the inverse kinematics of robot have been solved. the planning of the motion path simulation results for the 3R,4R,5R and 6R robot validate it's effectiveness and feasibility.
出处 《机械与电子》 2004年第9期53-55,共3页 Machinery & Electronics
关键词 冗余机器人 RBF 仿真 redundant robot RBF simulation
  • 相关文献

参考文献7

  • 1Paul P R, Shimano B. Kinematics control equations for simple manipulators [ J ]. IEEE Trans On SMC, 1981,11(6) :66-72.
  • 2Manocha D, Canny J F. Efficient inverse kinematics for general 6r manipulator[ J]. IEEE Trans on Robotics and Automation, 1994,10 (5) :648 - 657.
  • 3Lee G C S. Robot arm kinematics ,dynamics and control[J]. Computer,1982,15(12) :62-79.
  • 4Featherstone R. Position and velocity transformation between robot end -effector coordinate and jointangle[J]. The International Journal of Robotics Research, 1983,2 (2): 35 - 45.
  • 5Korein J U, Balder N I. Techniques for generating the goal-directed motion of articulated structures [ J ]. IEEE Computer Graphics and Application, 1982,2 (9) :71 - 81.
  • 6Miller W T. Sensor - based control of robotic manipulators using general learning algorithm [ J ]. IEEE Robotics and Automation, 1987,4 (2): 157 - 165.
  • 7Kuperstein M,Rubinstein J. Implementation of an adaptive neural controller for sensory - motor coordination[ J]. IEEE Control Systems Magazine, 1989,9 (3) :25 - 30.

同被引文献31

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部