期刊文献+

支持向量机训练算法的实验比较 被引量:5

Experimental Comparison of Support Vector Machine Training Algorithms
下载PDF
导出
摘要 SVM是基于统计学习理论的结构风险最小化原则的,它将最大分界面分类器思想和基于核的方法结合在一起,表现出了很好的泛化能力。并对目前的三种主流算法SVMlight,Bsvm与SvmFu在人脸检测、MNIST和USPS手写数字识别等应用中进行了系统比较。 Support vector learning algorithm is based on structural risk minimization principle.It combines two remarkable ideas: maximum margin classifiers and implicit feature spaces defined by kernel function.Presents a comprehensive comparison of three mainstream learning algorithms: SVM^(light),Bsvm,and SvmFu using face detection,MNIST,and USPS hand-written digit recognition applications.
出处 《计算机应用研究》 CSCD 北大核心 2004年第11期18-20,共3页 Application Research of Computers
关键词 统计学习理论 支持向量机 训练算法 Statistical Learning Theory Support Vector Machine Training Algorithms
  • 相关文献

参考文献33

  • 1N Aronszajn.Theory of Reproducing Kernels[J].Transactions of American Mathematical Society,1950,68:337- 404.
  • 2B E Boser,I M Guyon,V Vapnik.A Training Algorithm for Optimal Margin Classifiers[C].New York: ACM Press,1992.144- 152.
  • 3C Burges.A Tutorial on Support Vector Machines for Pattern Recognition [J].Data Mining and Knowledge Discovery,1998,2(2):121- 167.
  • 4O Chapelle,V Vapnik.Choosing Multiple Parameters for Support Vector Machines [J].Machine Learning,2002,46(1): 131- 159.
  • 5C Cortes,V Vapnik.Support Vector Networks [J].Machine Learning,1995,20(3):273- 297.
  • 6T G Dietterich.Machine Learning Research:Four Current Directions [J].AI Magazine,1997,18(4): 97- 136.
  • 7T Evgeniou,M Pontil,T Poggio.A Unified Framework for Regularization Networks and Support Vector Machines [R].Massachusetts Institute of Technology: A.I.Memo No.1654,1999.
  • 8T Evgeniou.Learning with Kernel Machine Architectures[D].Massachusetts Institute of Technology: Ph.D.Dissertation,2000.
  • 9R Fletcher.Practical Methods of Optimization[M].New York: John Wiley & Sons,1981.
  • 10F Girosi,M Jones,T Poggio.Regularization Theory and Neural Networks Architectures[J].Neural Computation,1995,7(2): 219- 269.

同被引文献24

引证文献5

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部