期刊文献+

广义集值变分包含的迭代算法

An Iterative Algorithom for Generalized Set-Valued Variational Inclusion
下载PDF
导出
摘要 引入了N(·,·):H×H→H在第一变元关于A是α g 松驰Lipschitz连续的概念,利用一种新的单调算子—h 单调算子所生成的预解算子,给出了一类广义集值变分包含的迭代算法,并证明了该算法的强收敛性. In this paper, a new concept of α-g-relaxed Lipschitz is introduced. By using the resolvent operator technique associated with a new class of monotone operator-h-monotone operator, an iterative algorithm for generalized set-valued variational inclusion is suggested and analysed. The convergence of iterative sequence generated by the algorithm is also proved.
作者 张清邦
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 2004年第5期467-470,共4页 Journal of Sichuan Normal University(Natural Science)
基金 四川省教育厅重点科研基金资助项目
关键词 a-g-乎松驰Lipschitz连续 H-单调算子 预解算子 迭代算法 HILBERT空间 α-g-relaxed lipschitz Generalized set-valued variational inclusion h-monotone operator Iterative algorithm Hibert space
  • 相关文献

参考文献16

  • 1Noor M A. Generalized set-valued variational inclusions and resolvent equations[J]. Math Anal Appl,1998,220:206-220.
  • 2Ding X P. Generalized implicit quasivariational inclusions with Fuzzy set-valued mapping[J]. Comput Math Appl,1999,38:71-79.
  • 3Ding X P. Generalized quasi-variational-like inclusions with Fuzzy mapping and nonconvex functionals[J]. Adv Nonlinear Var Inequal,1999,2(2):13-29.
  • 4Ding X P, Park J Y. A new class of generalized nonlinear implicit quasivariational inclusions with Fuzzy mapping[J]. Comput and Appl Math,2002,138:243-257.
  • 5Ding X P. Algorithms of solutions for completely generalized mixed implicit quasi-variational inclusions[J]. Appl Math Comput,2003,148(1):47-66.
  • 6Liu L W, Li Y Q. On generalized set-valued variational inclusions[J]. Math Anal Appl,2001,261:231-240.
  • 7Fang Y P, Huang N J. H-Monotone operator and resolvent operator technique for variational inclusions[J]. Appl Math and Comput,2003,145:795-803.
  • 8Nadler S B. Mutivalued Contraction mapping[J]. Pacific J Math,1969,30(3):457-488.
  • 9丁协平,夏福全.局部凸拓扑矢量空间内的广义拟变分不等式(英文)[J].四川师范大学学报(自然科学版),2002,25(1):1-6. 被引量:10
  • 10丁协平.局部凸拓扑矢量空间内的广义对策和广义拟变分不等式(英文)[J].四川师范大学学报(自然科学版),2000,23(2):109-116. 被引量:11

二级参考文献58

  • 1刘家特.中国传统武术对大学生心理健康的影响[J].佳木斯教育学院学报,2011(2):272-273. 被引量:6
  • 2殷建鑫.武德思想在当代教育中的价值[J].佳木斯教育学院学报,2010(3):134-135. 被引量:4
  • 3丁协平.QUASI-VARIATIONAL INEQUALITIES AND SOCIAL EQUILIBRIUM[J].Applied Mathematics and Mechanics(English Edition),1991,12(7):639-646. 被引量:4
  • 4Pan Y H.-[J].Sichuan Normal Univ(Natural Science),1996,19(2):56-59.
  • 5Luo C L.-[J].Sichuan Normal Univ(Natural Science),1997,20(6):11-16.
  • 6Hu R X.Sensitity analysis for general quasi-varnational inequalities[J].Sichuan Normal Univ(Natural Science),1998,21(6):628-632.
  • 7Noor M A. General algorithm and sensitivity analysis for variational inequalities[J]. J Appl Math Stoch Anbal, 1992,5(1) :29 - 42.
  • 8Daformos S. Sensitivity analysis for variational inequalities[J]. Math Ooers Res, 1988 ,13 : 421 -434.
  • 9Kyparisis J. Sensitivity analysis in variational inequalities and nonlinear complementarity Proplems[J]. Anal Oper Pes,1990,27:143 - 174.
  • 10Noor M A. Interative Methods and sensitivity analysis for general quasi-variational inequalities[J]. J Natur Geom, 1993,3:39 - 58.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部