期刊文献+

随机波动模型的沪深股市比较研究 被引量:4

Comparative Research of Shanghai and Shenzhen Stock Market Based on Stochastic Volatility Model
下载PDF
导出
摘要 金融市场的风险和波动性一直是现代金融学研究的主题。金融风险具有时变性,金融波动具有持续性。介绍了刻画波动特性的随机波动模型及其估计方法。为了帮助投资者和政府监管机构理解沪深股市的风险特性,利用随机波动模型对上海股市和深圳股市的波动特性进行建模和比较分析,结果发现,上海股市比深圳股市的风险高,波动的持续性低;分析了产生这种现象的原因,并提出了若干建议。 Financial market risk and volatility is a main issue for modern finance research. The characteristics of financial risk is time varying and volatility is persistent. The paper introduces stochastic volatility (SV) model and its estimation method. In order to help investors and government understand risk characteristics of Shanghai and Shenzhen Stock Markets, the paper comparatively studies them with SV model, and finds that Shanghai Market is of higher risk , but less persistency. This paper analyzes the causes of these and offers some proposals for investors, government and researchers.
出处 《天津大学学报(社会科学版)》 2004年第4期334-338,共5页 Journal of Tianjin University:Social Sciences
关键词 金融风险 波动性 随机波动模型 持续性 financial risk volatility stochastic volatility model persistence
  • 相关文献

参考文献5

  • 1[1]Engle R F. Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation[J]. Econometrica,1982(50):987-1008.
  • 2[2]Taylor S J. Modeling Financial Time Series[M].New York:Wiley, 1986.
  • 3[3]Bollerslev T, Engel R F. Common persistence in conditional variances[J].Econometrica,1993(61):167-186.
  • 4[4]Ruiz E. Quasi-maximum likelihood estimation of stochastic volatility models[J]. Journal of Econometrics,1994(63):289-306.
  • 5李汉东,张世英.随机波动模型的持续性和协同持续性研究[J].系统工程学报,2002,17(4):289-295. 被引量:16

二级参考文献1

共引文献15

同被引文献50

  • 1曾慧.ARCH模型对上证指数收益波动性的实证研究[J].统计与决策,2005,21(03X):97-98. 被引量:23
  • 2周彦,张世英.基于MCMC方法的连续时间SV模型建模研究[J].工业工程,2007,10(1):83-86. 被引量:2
  • 3Engle R F.Autoregressive Conditional Heteroskedssticity with Estimates of the Variance of U.K.Inflation[J].Econometrica,1982,(50):987-1008.
  • 4Jun,Yu.Forecasting Volatility in the New Zealand Stock Market[J].Journal of Financial Economics,2002,(12):193 -202.
  • 5Hill T,O' Connor M,Remus W.Neural Network Models for Time Series Forecasts[J].Management Science,1996,42 (7):1082-1092.
  • 6Ghysels,E.,Harvey,A.,Renault,E..Stochastic Volatility[M].in G.S.Maddala and C.R.Rao(eds.),Handbook of Statistics,vol.14:119-192.Elsevier Science Publishers,Amsterdam,The Netherlands,1995.
  • 7Gallant,A.R.,Hsieh,D and Tauchen,G..Estimation of stochastic volatility models with diagnostics[J].Journal of Econometrics,1997,81:159-192.
  • 8Taylor S.J..Modeling Financial Time Series[M].Wiley,New York,NY.1986.
  • 9Gallant,A.R.and Tauchen,G..Which Moments to Match[J].Econometric Theory,1996,12:657-681.
  • 10Gallant,A.R.,Long,J.R..Estimating Stochastic Differential Eqtations Efficiently by Minmum Chi-Square[J].Biometrika,1997,84:125-141.

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部