期刊文献+

基于trie的关联规则发现算法 被引量:3

TrieBased algorithm of mining association rules
下载PDF
导出
摘要 分析了现有的关联规则挖掘算法,总结了当前的研究概况,从数据结构的角度出发,提出了用trie做数据结构存储交易数据库的所有项集,实现快速产生频繁项集,改进关联发现的性能.该方法只需一次扫描数据库,能够支持小的支持度计数和数据库的动态修改.  Existing algorithms of mining association rules were analyzed and a new trie-based algorithm was presented from the viewpoint of data-structure.The algorithm uses trie tree to store all possible item sets and produce frequent item set fast so that the associated mining is realized.The algorithm supports small minsupp and dynamical database updating by means of single scanning of database only.
作者 郑丽英
出处 《兰州理工大学学报》 CAS 北大核心 2004年第5期90-92,共3页 Journal of Lanzhou University of Technology
基金 甘肃省自然科学基金(ZS003 B35 026 C)
  • 相关文献

参考文献4

  • 1Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in very large databases [A].Buneman P,Jajodia S.Proceedings of the ACM SIGMOD Conference on Management of Data [C].Washington:ACM Press,1993.207-216.
  • 2Park J S,Chen M S,Yu P S.An effective hash-based algorithm for mining association rules [A].Michael J C,Donovan A S.Proceedings of the ACM SIGMOD Conference on Management of Data [C].Washington:ACM Press,1995.176-186.
  • 3Savasere A,Omiecinski E,Navathe S B.An efficient algorithm for mining association rules in large databases [A].Umeshwar D,Peter M D G,Shojiro N.Proceedings of the 21th International Conference on Very Large Data Bases [C].Zurich:Morgan Kanfmann,1995.432-4
  • 4Agrawal R,Srikunt R.Fast algorithms for mining association rules in large databases [A].Jorge B B,Matthias J,Carlo Z.Proceedings of the 20th International Conference on Very Large Data Bases [C].Santiago de Chile:Morgan Kanfmann,1994.487-499.

共引文献1

同被引文献22

  • 1PAWLAK Z.Rough sets [J].International Journal of Computer and Information Sciences,1982,11(5):341-356.
  • 2曾黄麟.粗集理论及其应用关于数据理论的新方法[M].重庆:重庆大学出版社,1995..
  • 3WONG S K M,ZIARKO W.On optimal decision rules in decision tables [J].Bulletin of Polish Academy of Sciences,1985(33):693-696.
  • 4Agrawal R,Imielinski T,Swanmi A.Mining association rules between sets of items in large database[A].In Proc of the ACM SIGMOD Conference on Management of Data[C].Washington DC:SIGMOD,1993.207-216.
  • 5Agrawal R,Srikant R.Fast algorithms for mining association rules[A].In:Proceedings of the 20th International Conference on Very Large Databases[C].Santiago,Chile:[s.n.],1994.487-499.
  • 6Sarwar, B. , Karypis, G. , Konstan, J. et al. Analysis of Recommendation Algorithms for E-commerce [C]//ACM Conference on Electronic Commerce, 2000: 158-167.
  • 7Yu, P. S.. Data Mining and Personalization Technol- ogies [C]//Proceedings of the 6th International Con-ference on Database Systems for Advanced Applica- tions, 1999: 6-13.
  • 8AltaVista. http://www, altavista, digital, com, 2002 [DB/OL].
  • 9Amazon.http://www.amazon.corn,2002[DB/OL].
  • 10Hill, W.C. , Stead, L. , Rosenstein, M. , et al. Rec- ommending and evaluating choices in a virtual commu- nity of use[C]//Proceedings of CHI'95, 1995: 194- 201.

引证文献3

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部