期刊文献+

概念级误用检测系统的认知能力研究 被引量:1

A Study on Apperception Ability of Concept Level Misuse Detection System
下载PDF
导出
摘要 无法检测到未知攻击以及不能自动更新知识库是现有误用检测系统的两大缺点 .概念级误用检测系统(CLMDS)中利用SRRW特征选取算法、CHGL技术和独立双模型互训练结构极大地提升了系统的认知能力 ,有效地解决了上述问题 .文章从静态和动态两个层面对系统的认知能力进行了分析 ;实验结果表明 :CLMDS具有很强的认知能力 ,不但能检测到未知的攻击样式 ,而且还能实现知识库的自动更新 . Current misuse detection systems are of little use for new attacks and they cannot automatically update their rule databases.SRRW,CHGL and the technology of co-training for independent dual-model greatly improve the apperception ability of CLMDS,and provide a good solution for the limitation of misuse detection systems.Apperception ability is analyzed from static aspect as well as dynamic aspect.Results of the experiments show that with powerful apperception ability CLMDS can not only detect new attacks but also update its own rule base automatically.
出处 《电子学报》 EI CAS CSCD 北大核心 2004年第10期1694-1697,共4页 Acta Electronica Sinica
基金 普天首信重大科研项目 (No.0 2 1 1 2 5)
关键词 人侵检测系统 特征选取 机器学习 误用检测 IDS feature selection machine learning misuse detection
  • 相关文献

参考文献2

二级参考文献3

共引文献45

同被引文献21

  • 1李霞,张田文,郭政.一种基于递归分类树的集成特征基因选择方法[J].计算机学报,2004,27(5):675-682. 被引量:26
  • 2李颖新,刘全金,阮晓钢.一种肿瘤基因表达数据的知识提取方法[J].电子学报,2004,32(9):1479-1482. 被引量:13
  • 3边肇祺.模式识别[M].北京:清华大学出版社,1987..
  • 4Liu H, Sun J, Liu L, et al. Feature selection with dynamic mutual information[ J ]. Pattern Recognition, 2009,42 ( 7 ) : 1330 - 1339.
  • 5Zhang Daoqiang, Chen Songcan, Zhou Zhi-Hua. Constraint score.A new filter method for feature selection with pair- wise constraints[ J ]. Pattern Recognition, 2008,41 ( 5 ) : 1440 - 1451.
  • 6Guyon I, Weston J, Barnhil S, et al. Gene selection for cancer classification using support vector machines [ J]. Machine learning, 2002,46 ( 1 - 3 ) : 389 - 422.
  • 7Kennedy J, Eberhart R C. Particle swarm optimization[ A]. Proceedings of International Conference on Neutral Net- works IV[ C ]. Piscataway NJ : IEEE Service Center, 1995. 1942 - 1948.
  • 8Kennedy J,Eberhart RC. A discrete binary version of theparticle swarm algorithm[ A]. Proceedings of IEEE Inter- national Conference on Systems, Man, and Cybernetics [C]. Washington: 1EEE, 1997. 4104 - 4109.
  • 9Lin SW, Ying KC, Chen SC, et al. Particle swarm optimi- zation for parameter determination and feature selection of support vector machines [ J ]. Expert Systems with Appli- cations,2008,35(4) : 1817 - 1824.
  • 10Sahua B, Mishra D. A novel feature selection algorithm u- sing particle swarm optimization for cancer microarray da- ta[ A]. Proceedings of International Conference on Mod- elling Optimization and Computing [ C ]. USA: Procedia Engineering, 2012,38,27 - 31.

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部