摘要
随着生物科学技术的发展,其数据量的增长也非常迅速,很难在一定合理的时间内对数据进行建模和分析,因此,对并行数据挖掘算法的研究已变成解决此问题的重要途径。决策树途径已被广泛用作一种重要的分类工具,本文研究了几种决策树的并行训练策略并对它们的性能进行了比较。
With the development of biology technology ,the amounts of data increase very fast. It is difficult to analyze and model the data within reasonable amount of time ,so studying parallel data mining algorithms has been becoming an important approach to solving the problem. Decision tree has been widely applied as an important classification tool. This paper surveys several parallel training decision tree strategies and compares their performance.
出处
《计算机科学》
CSCD
北大核心
2004年第8期129-130,135,共3页
Computer Science
基金
国家自然科学基金项目资助(60273079)。