期刊文献+

决策树的并行训练策略 被引量:1

Parallel Strategies for Training Decision Tree
下载PDF
导出
摘要 随着生物科学技术的发展,其数据量的增长也非常迅速,很难在一定合理的时间内对数据进行建模和分析,因此,对并行数据挖掘算法的研究已变成解决此问题的重要途径。决策树途径已被广泛用作一种重要的分类工具,本文研究了几种决策树的并行训练策略并对它们的性能进行了比较。 With the development of biology technology ,the amounts of data increase very fast. It is difficult to analyze and model the data within reasonable amount of time ,so studying parallel data mining algorithms has been becoming an important approach to solving the problem. Decision tree has been widely applied as an important classification tool. This paper surveys several parallel training decision tree strategies and compares their performance.
出处 《计算机科学》 CSCD 北大核心 2004年第8期129-130,135,共3页 Computer Science
基金 国家自然科学基金项目资助(60273079)。
关键词 决策树 并行训练 数据挖掘 动态数据分片 人工神经元网络 统计模型 Decision tree Parallel training Data mining
  • 相关文献

参考文献11

  • 1[1]Wang D,Wang X,Honavar V, Dobbs D. Data-Driven Generation of Decision Trees for Motif-Based Assignment of protein Sequences to Functional families. In: Proc. of the Atlantic Symposium on Computational Biology, Genome Information Systems&Technology. 2001
  • 2[2]Quinlan J R. C4.5 :programs for Machine Learning. Morgan Kaufmann,San Matoo,CA,1993
  • 3[3]Agawal R,et al. An interval classifier for database mining applications. In: pric. of the VLDB Conf. Vancouver, British Columbia, Canada,Aug. 1992. 560~573
  • 4[4]Michie D,spiegelhalter D J,Taylor C C. Machine Learning,Neural and Statistical Classification. Ellis Horwood,1994
  • 5[5]Hunt E B,Marin J,Stone P T. Experiments in Induction. Academic press, 1996
  • 6[6]Quinlan J R. Discovering rules from large collections of examples:A cass study. In:Michie D,ed. Expert Systems in the Micro Electronic Age, Edinburgh University press, 1979
  • 7[7]Agrawal R, Imielinski T, Swami A. Database mining: A performance perspective. IEEE Transactions on Knowledge and Data Eng. ,1993,5(6) :914~925
  • 8[8]Mehta M,Agrawal R,Rissanen J. SLIQ: A fast scalable classifier for data mining. In: Pric. of the Fifth Int' 1 Conf. on Extending Database Technology, Avignon, france, 1996
  • 9[9]Shafer J,Agrawal R,Mehta M. SPRINT:A scalable classifier for data mining. In:Proc. of the 22nd VLDB Conf. 1996
  • 10[10]Chattratichat J,et al. Large scale data mining:Challenges and responses. In:Proc. of the Third Int7 Conf. on Knowledge discovery and Data Mining, 1997

同被引文献15

  • 1Dwork C. A Firm Foundation for Private Data Dnalysis[J]. Communications of the ACM,2011,54(1) :86-95.
  • 2Kenthapadi K, Mishra N, Nissim K. Simulatable auditing[C]// 24th ACM Symposium on Principles of Database Systems. New York, NY, USA: ACM, 2005 : 118-127.
  • 3Mohammed N,Chen Rui, et al. Differentially Private Data Re- lease for Data Mining[C]//KDD ' 11. New York, NY, USA: ACM, 2011 : 493-501.
  • 4Samarati P. Protecting respondents' identities in microdata re- lease[J]. IEEE Transactions on Knowledge and Data Engineering, 2001,6(13) : 1010 1027.
  • 5Sweeney L. k-anonymity: A model for protecting privacy[J]. IEEE Security And Privacy, 2002,5(10):557-570.
  • 6Dinur I, Nissim K. Revealing information while preserving privacy [C]//the 22nd ACM Symposium on Principles of Database Sys- tems. New York, NY, USA: ACM, 2003 : 202-210.
  • 7Dwork C. Differential Privacy[C]// ICALP' 06. Venice, Italy Springer Verlag,2006:1 12.
  • 8Barak B, Chaudhuri K, Dwork C, et al. Privacy, accuracy, and consistency too: a holistie solution to contingency table release [C]//PODS'07. Beijing,China: Association for Computing Ma- chinery, Inc, 2007 : 273-282.
  • 9Dwork C. Differential privacy: A survey of Results[C]// TAMC' 08. Xi'an, China :Pringer-Verlag, 2008:1-19.
  • 10Dwork C, MeSherry F, Nissim K, et al. Calibrating noise to sen- sitivity in private data analysis[C]//TCC' 06. New York, NY, USA: Springer, 2006 : 265-284.

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部