期刊文献+

人肝细胞系L-02与聚丙烯生物杂化界面构建的初步研究 被引量:3

Study on the interface of human hepatocyte L-02 polypropylene:simple culture method of human hepatocyte with spheroidal aggregate culture
原文传递
导出
摘要 目的 建立与人肝细胞相容的聚丙烯生物杂化界面 ,为用聚丙烯中空纤维管构建生物人工肝反应器奠定基础。方法 通过化学接枝的方法在聚丙烯表面引入聚丙烯酰胺形成聚合反应 ,并对人肝细胞系L 0 2在其表面的生长特点进行检测评价。结果 聚丙烯膜的静态水相接触角由接枝前的 (72± 5 )°降低为接枝改性后的 (30± 4 )°,明显提高了接枝改性聚丙烯膜的亲水性 ,并通过简单的静止培养使人肝细胞系L 0 2在其表面呈球形聚集体生长 ,提高了培养密度和活性。结论 在聚丙烯表面接枝聚丙烯酰胺可初步建立良好的人肝细胞系L 0 2与聚丙烯生物杂化界面 。 Objective To found new interface of human hepatocyte/poly propylene with good cytocompatibility for made polypropylene hollow fibers bioreactor of bioartificial liver in future. Methods Using the macromolecular hydroperoxide groups on the polypropylene membrane surface as initiators, acrylamides were polymerized on the polypropylene membranes, under induction by both UV irradiation and Fe 2+ reduction. Growth characteristics of human hepatocyte L 02 were detected when it was cultured on polystyrene, polypropylene and modified polypropylene membrane surface. Results Water contact angle measurement of the polypropylene and the modified polypropylene membranes decreased from (72±5)° to (30±4)°,which indicated that the hydrophilicity of the membrane was improved obviously after the grafting modification. Human hepatocyte L 02 could not adhere and spread on modified polypropylene membrane surface, and grown in spheroidal aggregate with higher density and higher proliferation ratio measured by MTT method. Conclusions Acrylamide polymerized on the polypropylene membranes is a good method which not only improved human hepatocytes cytocompatibility but also found a new simple culture method with spheroidal aggregate culture of human hepatocyte。
出处 《中华外科杂志》 CAS CSCD 北大核心 2004年第17期1064-1068,共5页 Chinese Journal of Surgery
关键词 人肝细胞系 初步研究 生物人工肝 构建 活性 表面接枝 相容 培养密度 聚集体 生长 Hepatocyte Human Polypropylenes Surface modification Spheroidal aggregate culture
  • 相关文献

参考文献11

二级参考文献19

  • 1[1]Kim SW, Jacobs H. Design of nonthrombogenic polymer surfaces for blood-contacting medical devices[J]. Blood Purification,1996,14:357-372.
  • 2[2]Eberhart A, Zhang Z, Guidoin R, et al. A new generation of polyurethane vascular prostheses: Rara Avis or Ignis Fatuas?[J] J Biomed Mater Res (Appl Biomater), 1999,48: 546-558.
  • 3[3]Yang M, Zhang Z, Hahn C, et al. Totally implantable artificial hearts and left ventricular assist devices: Selecting impermeable polycarbonate urethane to manufacture ventricles[J ]. J Biomed Mater Res (Appl Biomater), 1999,48: 13-23.
  • 4[4]Belanger MC, Marois Y, Roy R, et al. Selection of a polyurethane membrane for the manufacture of ventricles for a totally implantable artificial heart: Blood compatibility and biocompatibility studies[ J ]. Artificial Organs, 2000,24 ( 11 ): 879-888.
  • 5[5]Yoneyyama T, Ishihara K, nakabayashi N, et al. Short term in vivo evaluation of small-diameter vascular prostheses composed of segmented poly(etherurethane)/2-methacryloyloxy ethyl phosphorylcholine polymer blend[J]. J Biomed Res(Appl Biomater), 1998,43: 15-20.
  • 6[6]Bae JS, Seo EJ, Kang IK. Synthesis and characterization of heparinized polyurethanes using plasma glow discharge[J]. Biomaterials, 1999,20: 529-537.
  • 7[7]Kim YJ, Kang IK, Huh MW, et al. Surface characterization and in vivo blood compatibility of poly(ethylene terephthalate)immobilized with insulin and/or heparin using plasma glow discharge[J]. Biomaterials,2000,21:121-130.
  • 8Koike M,Matdushita M,Taguche K,et al.Function of culturing monolayer hepatocytes by collagen gel coating and coculture with nonparenchymal cells[].Artificial Organs.1996
  • 9Landry J,Bernier D,Duellet C.Spheroids aggregate culture of rat liver cells: histotypic reorganization, biomatrix deposition, and maintenance of functional activities[].The Journal of Cell Biology.1985
  • 10李铎.肝细胞的临床应用前景[J].国外医学(消化系疾病分册),1997,17(2):85-89. 被引量:2

共引文献35

同被引文献78

  • 1彭承宏,韩宝三,高长有,马祖伟,赵之明,王涌,刘宏,张桂娣,杨梅娟.人肝细胞/微孔聚丙烯超滤膜生物界面构建的研究[J].中华医学杂志,2004,84(17):1460-1464. 被引量:8
  • 2Yim E K F,Wen J,Leong K W. Acta Biomater.,2006,2:365-376.
  • 3Chew S Y,Wen J,Yim E K F,et al. Biomacromolecules,2005,6: 2017-2024.
  • 4Chew S Y,Hufnagel T C,Lim C T,et al. Nanotechnology,2006,17: 3880-3891.
  • 5Chua K N,Lim W S,Zhang P C,et al. Biomaterials,2005,26: 2537-2547.
  • 6Feng Z Q,Chu X H,Huang N P,et al. Biomaterials,2009,30: 2753-2763.
  • 7Koide N, Sakaguchi K,Koide Y, et al. Exp. Cell. Res.,1990,186: 227-235.
  • 8Ijima H,Matsushita T,Nakazawa K,et al. Tissue Eng.,1998,4: 213-226.
  • 9Matsushita T,Nakano K,Nishikura Y,et al. Cytotechnology,2003,42: 57-66.
  • 10Kidambi S,Lee I,Chan C. J. Am. Chem. Soc.,2004,126:16286-16287.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部