期刊文献+

测量与识别电力系统幅值、频率、相位轻微变化的小波域正交信号分析方法 被引量:11

A WAVELET-BASED QUADRATURE SIGNAL METHOD TO QUANTIFY AND IDENTIFY SLIGHT DEVIATIONS OF AMPLITUDE, FREQUENCY AND PHASE IN POWER SYSTEMS
下载PDF
导出
摘要 该文利用线性相位复小波具有奇对称实部与偶对称虚部的特点,提出一种基于非同步采样技术的小波域正交信号分析方法,用以分离轻微电能质量扰动中包含的幅值扰动、频率扰动与相位扰动,进而确定这些扰动的幅度与类型。这种方法的显著特点是:采用具有最短平滑滤波器(Haar滤波器)的双正交复小波与只须在少数尺度上进行的移动不变小波变换;扰动幅度与小波变换系数之间存在简单的对应关系;识别扰动类型只须利用简单的二进制特征量与二-十进制转换方法。这些特点使得该方法简单、快速、准确。 An synchronous sampling quadrature signal method in wavelet-domain is presented to separate slight amplitude deviation (AD), frequency deviation (FD) and phase deviation (PD) from a complex power quality disturbance, then quantify and identify them. The method is based on the fact that a linear-phase complex wavelet is certainly with an odd real part and an even imaginary part. The distinctive characteristics of the method are: complex biorthogonal wavelet with the shortest smoothing filter (Haar filter), shift-invariant wavelet transform (WT) at a few scales, simple relationships between the WT coefficients and the magnitudes of AD, FD and PD, simple binary feature victor and binary-decimal conversion identifying process. All the above make the method simple, correct and fast.
作者 陈祥训
出处 《中国电机工程学报》 EI CSCD 北大核心 2004年第11期1-6,共6页 Proceedings of the CSEE
基金 国家自然科学基金项目(50077021)~~
关键词 正交信号 小波域 线性相位 幅度 小波变换 滤波器 频率 电力系统 复小波 幅值 Electric power engineering Basic power quality disturbances Complex biorthogonal wavelet Quadrature signal in wavelet-domain Binary features Binary-decimal conversion identification Asynchronous sampling.
  • 相关文献

参考文献13

  • 1Gaouda A, Salama M, Sultan M, et al. Power quality detection and classification using wavelet-multiresolution signal decomposition.IEEE Trans. Power Delivery, 1999,104(9): 1469-1476.
  • 2Application of multiresolution signal decomposition for monitoring short-duration variations in distribution systems[J]. IEEE Trans. Power Delivery, 2000,15(2): 478-485.
  • 3Santoso S. Powers E J, Grady W,et al. Power quality disturbance waveform recognition using wavelet-based neural classifier-part 1:Theoretical foundation, part 2: Application, IEEE Trans. Power Delivery, 2000,15(1): 222-235.
  • 4Karimi M, Mokhtari H, Iravani R. Wavelet based on-Line disturbance detection for power quality applications. IEEE Trans. Power Delivery,2000,15(4): 1212-1220.
  • 5Angrisani L, aponte P D, D'Apuzzo M. A measurement method based on the wavelet transform for power quality analysis[J]. IEEE Trans. Power Delivery, 1998,13(4): 990-998.
  • 6Poisson O, Rioual P, Meunier M. Detection and measurement of power quality disturbances using wavelet transform[J]. IEEE Trans. Power Delivery, 2000,15(3): 1039-1044.
  • 7J.Huang S.et al. Application of morlet wavelets to supervise power system disturbances[J]. IEEE Trans. Power Delivery, 1999,14(1):235-243.
  • 8Chung J, Power E, grady W, et al. Power disturbance classifier using a rule-based method and wavelet packet-based hidden markov model[J].IEEE Trans. Power Delivery, 2002,17(1 ): 233-241.
  • 9Sweldens W. The lifting scheme: A custom-design construction of biorthogonal wavelets[J]. J. Appl. and Comput. Harmonic Analysis,1996,3(2): 186-200.
  • 10Chen Xiangxun. Measurement and classification of power quality disturbances using wavelet transform[A]. Digest of Confrence on Precision Electromagnetic Measurements 2002 (IEEE IMS CPEM2002,June 16-21, 2002, Ottawa, Canada[C].), 2002: 38-39.

二级参考文献1

  • 1Chen Xiangxun,Proc ICEE'99,1999年,231页

共引文献17

同被引文献172

引证文献11

二级引证文献239

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部