期刊文献+

基于离散GABOR变换的电网瞬态波形噪声迭代滤波算法研究 被引量:4

AN ITERATIVE ALGORITHM FOR NOISE FILTERING OF ELECTRIC POWER TRANSIENT SIGNALS VIA DISCRETE GABOR EXPANSION
下载PDF
导出
摘要 电网原始瞬态波形与噪声的离散GABOR分布特征不同,原始瞬态波形的离散GABOR分布集中,幅值较大;而噪声的离散GABOR分布均匀,能量一定,幅值较低,故可通过选择合适的噪声抑制阀值构造时频掩模函数和多次GABOR展开迭代计算,以实现原始瞬态波形和噪声的有效分离。该文利用了电网瞬态信号与噪声GABOR分布特征的不同,构造时频掩模函数,并通过基于离散GABOR变换的迭代算法实现噪声有效滤除。为了验证该算法在去噪的同时能有效保留原信号,文中用IEC1083-2 TDG(Test Data Generator)产生各种具有不同噪声水平的瞬态电压信号,进行去噪和重现原始瞬态信号试验研究,结果表明该算法能有效地消除噪声干扰, 噪声滤除后信号的NRMS误差不超过1%,可准确地重现各种原始瞬态电压信号。且能保持其原始特征。该迭代算法适用于各种电网瞬态信号去噪。 Electric power transient signal & its noise has different GABOR distribution in time-frequency domain. The signals GABOR distribution is concentrated while noise GABOR distribution is evenly scattered in time-frequency domain. By masking the desired signal from its discrete GABOR transform, an effective noise filtering is achieved via suitable noise offset value selection & iterative algorithm based on discrete GABOR expansion. To verify the effectiveness of noise filtering algorithm, IEC1083-2 TDG (test Data Generator) is used to simulate electric power transient signal with different noise level. Calculation result from IEC1083-2 TDG shows that the algorithm is very effective in noise filtering as desired signal NRMS error after noise filtering is less than 1% & original signal features are remain unchanged. This iterative algorithm is applicable for de-noising of various transient signal in electric power system.
机构地区 上海交通大学
出处 《中国电机工程学报》 EI CSCD 北大核心 2004年第11期69-73,共5页 Proceedings of the CSEE
关键词 掩模 噪声 瞬态信号 GABOR展开 去噪 波形 滤波算法 电网 电压信号 幅值 Electric power engineering Discrete Gabor transform Electric power transient Noise filtering
  • 相关文献

参考文献17

  • 1S.D.Stearns & R,A.David, Signal processing algorithms [M]. Printice Hall Inc. 1988.
  • 2胡步发,林建航.一种自适应检测瞬态信号的新方法[J].福州大学学报(自然科学版),1999,27(5):45-49. 被引量:5
  • 3傅晨钊,汲胜昌,李彦明,刘杰,王国刚.软门限小波去噪在变压器冲击试验中的应用研究[J].中国电机工程学报,2001,21(7):103-106. 被引量:12
  • 4马迎辉,赵刚,陈文针.高压测试系统中噪声处理的算法研究[J].高电压技术,2001,27(3):78-80. 被引量:7
  • 5Peter Prinz. Calculating the dual Gabor window for general sampling sets[J]. IEEE Transactions on Signal Processing, 1996, 44(8): 65-72.
  • 6XiangGen Xia, Qian S. An iterative algorithm for Time-Variant filtering in the discrete Gabor transform domain. [J]. ICASSP, 1997, 3:2121-2124.
  • 7Youhong Lu, Joel M. Morris. Noise reduction for NMR FID signals via Gabor Expansion [J]. IEEE Transactions on biomedical engineer, 1997,44(6)6: 128-134.
  • 8Qian S, Chen D. Joint Time-frequency analysis: methods and applications[M]. Prentice- Hall Inc. 1996.
  • 9Oppenheim A V, Schafer R W. Discrete-time signal processing [M].Prentice- Hall Inc. 1990.
  • 10Friedlander B, Porat B. Detection of transient signals by the gabor representation [J]. IEEE Transactions on ASSP, 1989, ASSP-37(2):169-180.

二级参考文献4

  • 1秦前清 杨宗凯.实用小波分析[M].西安:西安电子科技大学出版社,1998..
  • 2Sophocles J Orfanidis,Introduction to signal processing,1999年
  • 3王树勋,数字信号处理基础及试验,1992年
  • 4秦前清,实用小波分析,1998年

共引文献71

同被引文献45

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部