期刊文献+

基于多特征多分辨率融合的高光谱图像分类 被引量:8

HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON MULTIPLE FEATURES DURING MULTIRESOLUTION FUSION
下载PDF
导出
摘要 由于数据维数高 ,利用高光谱数据对地物进行分类 ,常规方法难以获得令人满意的结果 .在基于小波多分辨率融合方法进行特征图像的提取过程中 ,提出了利用多个空间特征所构成的特征矢量确定多分辨率融合权值的算法 ,有效地降低了原始图像的数据维并获得了用于后续分类的特征图像 .对AVIRIS数据进行的实验表明 ,利用新方法提取的特征进行分类 ,获得了高于传统方法确定融合权值的结果 . Because of the high data dimensionality of hyperspectral data, conventional methods are difficult to obtain satisfied results in the study of hyperspectral classification for materials on the ground. In the process of feature images extraction based on wavelet multiresolution fusion, a new method, which uses a feature vector consisting of multiple spacious salient features to determine fusion weights, wass presented. The algorithm can effectively reduce the hyperspectral data dimensionality and obtain the feature images for the successive classification. The experiments on AVIRIS data show that classification accuracy by using the new method is higher than that of using the conventional methods in determining weights.
作者 张钧萍 张晔
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2004年第5期345-348,共4页 Journal of Infrared and Millimeter Waves
基金 国家自然科学基金资助项目 ( 60 2 72 0 73 60 3 0 2 0 19)
关键词 多分辨率 高光谱图像 特征图像 权值 高光谱数据 融合方法 地物 传统方法 实验 常规方法 image classification hyperspectral image multiresolution fusion feature extraction
  • 相关文献

参考文献9

  • 1Jimenez Luis O. Landgrebe David A. Supervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data [J]. IEEE Trans. on System, Man, Cybern. 1998, 28(1): 39-54.
  • 2Landgrebe David A. On the relationship between class definition precision and classification accuracy in hyperspectral analysis[C]. IGARSS', 2000: 147-149.
  • 3Harsanyi Joseph C. Chang Chein-I. Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach [J]. IEEE Trans. on G.R.S. 1994, 32(4): 779-785.
  • 4Jia Xiu-Ping, Richards John A. Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification [J]. IEEE Trans. On G. R. S. 1999, 37(1): 538-542.
  • 5Zhang Ye, Desai M D, Zhang Jun-Ping, et al. Adaptive subspace decomposition for hyperspectral data dimensionality reduction [C]. ICIP99, Japan, 326-329.
  • 6Jimenez Luis O, Morell A M, Creus Antonio. Classification of hyperdimensional data based on feature and decision fusion approches using projection pursuit, majority voting, and neural networks [J]. IEEE Trans. On G.R.S., 1999, 37(3): 1360-1366.
  • 7Benediktsson J A, Kanellopoulos I. Classification of multisource and hyperspectral data based on decision fusion [J]. IEEE Trans. On G. R. S, 1999, 37(3): 1367-1377.
  • 8Zhang Jun-Ping, Zhang Ye. Hyperspectral image multiresolution fusion based on local information entropy [J]. Chinese Journal of Electronics. 2002, 11(2): 163-166.
  • 9Wilson Terry A, Rogers Steven K, Matthew Kabrisky. Perceptual-based image fusion for hyperspectral data [J]. IEEE Trans. On G.R S, 1998, 35(4): 1007-1017.

共引文献1

同被引文献79

引证文献8

二级引证文献158

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部