期刊文献+

一种小波提升的电力有源滤波器 被引量:1

A Wavelet Lifting-Based Active Power Filter
下载PDF
导出
摘要 提升算法是一种新的双正交小波构造方法 ,在时域对信号进行变换就可完成对信号频域特性的分析 .介绍提升算法的原理及实现步骤 ,将Daubechies9/ 7小波滤波器的提升格式应用于电力有源滤波器的设计 .它使得计算复杂度大大降低 ,有效地减少运行时间 ,提高滤波器的实时性 。 Lifting algorithm is a new method of biorthogonal wavelet construction, by which analysis of frequency-domain characteristic of signal can be completed rightly after signal transformation at time domain. The authors provide information about principle of lifting algorithm and proeedure of its implementation; and apply lifting scheme of Daubechies 9/7 wavelet filter to the design of active power filter. These make the complexity of computation to lower greatly and the working time to reduce effectively. Thus the filter has an improved real-time character and a better practical performance.
出处 《华侨大学学报(自然科学版)》 CAS 2004年第4期366-370,共5页 Journal of Huaqiao University(Natural Science)
关键词 小波变换 小波提升 欧几里得定理 谐波 wavelet transform, wavelet lifting, Euclidean axiom, harmonic wave.
  • 相关文献

参考文献7

二级参考文献35

共引文献224

同被引文献8

  • 1CHANG S G, VETTERLI M, YU B. Adaptive wavelet thresholding for image denoising and compression[J]. IEEE Transactions on Image Processing,2000,9(9):1532-1546.
  • 2POORNACHANDRA S. Wavelet-based denoising using subband dependent :hreshold for ECG signals[J]. Digital Signal Processing, 2008,18(1): 49-55.
  • 3DAUBECHIES I, SWELDENS W. Factoring wavelet transforms into lifting steps[J]. Journal of Fourier Analysis and Applications, 1998,4(3): 247-269.
  • 4SWELDENS W. The lifting scheme: A construction of second generation wavelets[J]. SIAM Journal on Mathematical Analysis, 1997,29(2) : 511-546.
  • 5SWELDENS W. The lifting scheme: A custom-design construction of biorthogonal wavelets[J]. Applied and Computational Harmonic Analysis, 1996,3(2): 186-200.
  • 6CALDERBANK A R, DAUBECHIES I, SWELDENS W, et al. Wavelet transforms that map integers to integers[J]. Applied and Computational Harmonic Anakysis, 1998,5(3) :332-369.
  • 7DONOHO D L,JOHNSTONE I M. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of the A- merican Statistical Association, 1995,90(432) : 1200-1204.
  • 8DONOHO D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995,41(3):613- 627.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部