期刊文献+

碳纳米管/聚合物复合吸波材料性能研究 被引量:14

Radar Absorbing Properties of Carbon Nanotube/Epoxy Resin Composites
原文传递
导出
摘要 碳纳米管通过化学气相沉积工艺制备,碳纳米管直径10~30nm,纯度>90%。碳源为乙炔、铁/镍复合催化剂。加入适量的有机溶剂丙酮溶解环氧树脂,然后加入碳纳米管。分别高速搅拌和超声处理30min,加入固化剂乙二胺搅拌均匀,超声10min除去气体后,浇铸在铝板上制成吸波涂层。TEM检测碳纳米管。反射率扫频测量系统HP8757E标量网络分析仪检测吸波性能。碳纳米管和环氧树脂比例为1∶100时,3mm厚吸波层试样吸波峰出现在14 32GHz,吸波峰值R=-10 01dB,吸波频带宽度为2 16GHz(R<8dB)。厚度增加到9mm,在11GHz和17 83GHz出现双吸波峰,最大吸波峰出现在17 83GHz峰值R=-9 04dB,带宽约1GHz(R<8dB)。比例调整为5∶100时,波峰出现在7 91GHz,峰值加大到R=-13 89dB,带宽度达到3 19GHz(R<8dB)。 Multiwall Carbon nanotubes (MWNTs) were synthesized by chemical vapor deposition (CVD) process.Acetylene was used as carbon source and Fe and Ni as catalyst.Epoxy resin was solubilized in organic solvent acetone and then MWNTs were added to the polymer solution. After stirring and sonicating for 30 minutes respectively,liquid harder ethylene diamine was added to the solid suspension to polymerize the material while stirring and sonicating for 10 minutes to remove gas in composites.The polymer composite paste was then put into a aluminium plate to form the sample.Carbon nanotubes were characterized through TEM and radar absorbing properties were obtained through RAM measuring system of arch method reflectivity. When the ratio of carbon nanotubes and epoxy resin was 1∶100,the maximum absorbing peak of the composite obtained was 10.01dB at 14.32GHz and had a bandwidth of 2.16GHz(R<8dB)with 3 mm thickness.The double absorbing peaks were obtained with 9 mm thickness.When the ratio was 5∶100,the maximum absorbing peak of the composite obtained was 13.89dB at 7.91GHz and had a bandwidth of 3.19GHz(R<8dB)with 3 mm thickness.
作者 孙晓刚
出处 《塑料》 CAS CSCD 2004年第5期66-69,共4页 Plastics
基金 2003年江西省科技厅科研计划项目。
关键词 吸波 环氧树脂 性能研究 复合催化剂 碳纳米管 乙二胺 聚合物 频带宽度 扫频 网络分析仪 carbon nanotubes RAM radar absorbing properties composites
  • 相关文献

参考文献14

  • 1[1]Sumio Iijima.Helical microtubules of graphitic carbon[J].Nature,1991,354:56-58.
  • 2[2]Riichiro Saito,Gene Dresslhaus,M S Dresslhaus.PhysicalProperties of Carbon Nanotubes[M].London:Imperial College Press,1999.
  • 3[3]Ray H Baughman,Anvar A Zakhidov,Walt A de Heer.Carbon nanotubes-the route twoward applications[J].Science,2002,297:787-792.
  • 4[4]M R Falvo,G J Clary,R M Taylor,et al.Bending and buckling of carbon nanotubes under large strain[J].Nature,1997,389:582.
  • 5[5]Young-Kyum Kwon,David Tomanek.Orientational melting in carbon nanotube ropes[J].Phys Rev Lett,2000,84:1483.
  • 6[6]M R Falvo,G Clary,A Helser.Nanomanipulation experiments exploring fricational and mechanical properties of carbon nanotubes[J].Microsc Microanal,1999,(4):504.
  • 7[7]J P Salvetat,J M Bonard,N H Thomson,et al.Mechanicalproperties of carbon nanotubes[J].Appl Phys A,1999,69:255-260.
  • 8[8]B G Demczyk,Y M Wang,J Cumings,et al.Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes[J].Material Science and Engineering,2002,A334:173-178.
  • 9[9]Savas Berber,Young-Kyum Kwon,David Tomanek.Unusually high thermal conductivity of carbon nanotubes[J].Phys Rev Lett,2000,84:4613-4616.
  • 10[10]Ebbesen T W,Lezec H J,Hiura H,et al.Electrical conductivity of individual carbon[J].Nature,1996, 382:54-56.

二级参考文献16

  • 1[1]Iijima S.Nature, 354(1991):56.
  • 2[2]Scharff P. Carbon, 1998, 36(5~6):481-486.
  • 3[3]Jeroen W G, Wilder J W G,et al.Nature,1998,391:59-62.
  • 4[4]Hamada Sawada N, et al. Phys Rev Lett,1992,68:1579-1581.
  • 5[5]Sandler J, Shaffer M S P, Prasse T, et al.Polymer,1999,40:5967-5971.
  • 6[6]Slepyan G Ya, Maksimenko S A, Lakhtakia A, et al. Synthetic metals, 2001,124:121-123.
  • 7[7]Cao M, Wang B, Yuan J, et al. Materials and Design,1998,19:113-120.
  • 8[8]Jose K A, Vasuadara V, Vijary K V. Microwave Journal, 1998, 41(9):148-154.
  • 9[9]Smith F C, Chambers B, Bennet J C. IEE Proc-Sci Meas Technol, 1994, 141(6):538-546.
  • 10[10]Jaggard D L, Mickelson A R, Papas C H.Appl Phys,1979,18:211-216.

共引文献141

同被引文献222

引证文献14

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部