期刊文献+

分离产金属β-内酰胺酶的铜绿假单胞菌 被引量:109

Isolation of Metallo-β-lactamase-producing Pseudomonas aeruginosa from An Inpatient Setting
下载PDF
导出
摘要 目的 检测我院内科某病区产金属 β-内酰胺酶的铜绿假单胞菌及其对抗菌药物的耐药性。方法 纸片法测定产金属 β-内酰胺酶的铜绿假单胞菌 ;微量稀释法测定其对抗菌药物的耐药性。结果 该病区产金属 β-内酰胺酶的铜绿假单胞菌占同期分离铜绿假单胞菌的 32 .3% ,产酶菌株对替卡西林 /克拉维酸、头孢哌酮、头孢他啶、头孢吡肟、亚胺培南、奈替米星 ,复方增效磺胺耐药 ;对阿米卡星敏感 ;对哌拉西林、哌拉西林 /他唑巴坦、环丙沙星、洛美沙星部分敏感。结论 产生金属 β-内酰胺酶是铜绿假单胞菌对头孢类及碳青酶烯类耐药的机制之一 ,实验室对其正确检测可帮助临床合理选用抗菌药物并减少耐药性的扩散。 OBJECTIVETo detect the metallo-β-lactamase-producing Pseudomonas aeruginosa (PA) and its resistance to antimicrobial agents. METHODSDisk method and microdilution test were used. RESULTSMetallo-β-lactamase-producing PA accounted for 48.4% in all PA isolates. They were all resistant to ticarcillin/clavulanic acid, cefoperazone, ceftazidime, cefepime, imipenem, netilmicin, and trimethoprim/sulfamethoxazole, susceptible to amikacin, partly resistant to piperacillin, piperacillin/tazobactam, ciprofloxacin, and lomefloxacin. CONCLUSIONSProduction of metallo-β-lactamase is one of the resistance mechanisms of PA to cephems and carbapenems. Correct detection in laboratory is important for application of antimicrobial agents and reduction of the spread of bacterial resistance.
机构地区 解放军总医院
出处 《中华医院感染学杂志》 CAS CSCD 2004年第1期86-88,共3页 Chinese Journal of Nosocomiology
关键词 铜绿假单胞菌 Β-内酰胺酶 耐药性 Pseudomonas aeruginosa β-Lactamase Resistance
  • 相关文献

参考文献8

  • 1熊薇,孙自镛,申正义.铜绿假单胞菌的耐药性及其耐氟喹诺酮机制的研究[J].中华医院感染学杂志,2003,13(3):204-206. 被引量:110
  • 2倪明,张东绅,齐俊英.铜绿假单胞菌AmpC酶基因、调控基因及氨基酸序列研究[J].中华医院感染学杂志,2003,13(2):101-104. 被引量:33
  • 3刘长庭,王德龙,秦荧,王俊峰.不同年代老年气管切开患者铜绿假单胞菌对抗生素耐药性分析[J].中华医院感染学杂志,2002,12(6):419-421. 被引量:43
  • 4[4]Hirakata Y, Izumikawa K, Yamaguchi K, et al.Rapid detection and evolution of clinical characteristics of emerging multiple-drug-resistant Gram-negative rods carrying the metallo-β-lactamase gene blaIMP[J]. Antimicrob Agents Chemother, 1998, 42: 2006-2011.
  • 5[5]Arakawa Y, Shibata N, Shibayama K, et al. Convenient test for screening metallo-β-lactamase-producing Gram-negative bacteria by using thiol compounds[J]. J Clin Microbiol, 2000, 38(1): 40-43.
  • 6[6]National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard[S]. Fifth edition. Wayne Pennsylvania National Committee for Clinical Laboratory Standards. 2001.
  • 7[7]Saino Y, Kobayash F, Inoue M, et al. Purification and properties of inducible penicillin-beta-lactamase isolates from Pseudomonas maltophilia[J]. Antimicrob Agents Chemother, 1982, 22: 564-570.
  • 8[8]Senda K, Arakawa Y, Nakashima K, et al. Multifocal outbreaks of metallo-β-lactamase-producing Pseudomonas aeruginosa resistant to broad-spectrum β-lactams, including carbapenems[J]. Antimicrob Agents Chemother, 1996, 40(2): 349-353.

二级参考文献20

  • 1[1]Sanders CC, Sanders WE. Microbial resistance to newer generation β-lactam antibiotics:clinical and laboratory implications[J]. J Infect Dis,1985,151(3):399-406.
  • 2[2]Coudron PE, Moland ES, Thomoson KS. Occurrence and detection of AmpC beta-lactamases among Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis isolates at a veteran medical center[J]. J Clin Microbiol, 2000,38(5):1791-1796.
  • 3[3]Campbell J, Ciofu O, Hoiby N,et al. Pseudomonas aeruginosa isolates in patients with cystic fibrosis have different β-lactamase expression phenotypes but are homogeneous in the ampC- ampR genetic region[J]. Antimicrob Agents Chemother, 1997,41(6):1380-1384.
  • 4[4]Taimour YL, Gagnon L, Huletsky A, et al. Inactivation of the ampD gene in Pseudomonas aeruginosa leads to moderate-basal-level and hyperinducible AmpC β- lactamase expression[J]. Antimicrob Agents Chemother, 2000,44(3):583-589.
  • 5[5]Taimour YL, Dargis M, Huletsky A,et al. An ampD gene in Pseudomonas aeruginosa encodes a negative regulator of AmpC β-lactamase expression[J]. Antimicrob Agents Chemother, 1998,42(12):3296-3300.
  • 6[6]Jaurin B, Grunstrom T, Normark S, et al. Sequence elements determining ampC promoter strength in E.coli[J]. EMBO J, 1982,1(7):875-881.
  • 7[7]Stapleton P, Shannon K, Phillips I,et al. DNA sequence differences of ampD mutants of Citrobacter freundii[J]. Antimicrob Agent Chemother, 1995,39(11):2494-2498.
  • 8[8]Ehrhardt AF, Sanders CC, Romero JR, et al. Sequencing and analysis of four new Enterobacter ampD alleles[J]. Antimicrob Agent Chemother, 1996,40(8):1953-1956.
  • 9[1]Takenouchi T,Sakagawa E,Sugawara M.Detection of gyrA mutations among 335 Pseudomonas aeruginosa strains isolated in Japan and their susceptibilities to fluoroquinolones[J]. Antimicrob Agents Chemother, 1999, 43(2): 406-409.
  • 10[2]Mouneimne H, Jarlier V, Cambau E, et al. Type Ⅱ topoisomerase mutations in ciprofloxacin-resistance strains of Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 1999, 43(1): 62-66.

共引文献162

同被引文献854

引证文献109

二级引证文献4576

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部