期刊文献+

核函数方法及其在软测量建模中的应用研究 被引量:6

Research on Kernel Function and It s Application in Modeling of Soft Measur ement
下载PDF
导出
摘要 软测量技术对实施工业过程先进控制与优化具有重要的作用。介绍了几种新的基于核函数方法的软测量建模技术 ,并提出了针对复杂工业过程的混合核函数软测量建模方法。工业萘初馏塔酚油含萘量软测量应用表明 ,这类方法具有非线性处理能力强。 Soft measurement provides important effects for implement ing advanced process control and optimiz ation. Several new modeling technologies based on kernel function are introduced and the modeling method of soft measure ment based on hybrid kernel function is stated for complicated industrial proce sses.The practical application in soft m easurement of naphthalene content in car bolic oil of industrial naphthalene fore running column shows that this method fe atures high non-linear processing capabi lity,high accuracy and good spread abili ty of the model.
出处 《自动化仪表》 CAS 北大核心 2004年第10期22-25,共4页 Process Automation Instrumentation
关键词 软测量技术 核函数 推广能力 复杂工业过程 建模技术 先进控制 建模方法 工业萘 混合 初馏塔 Soft measurem ent Support vector machine Kernel functi on Spreading capability
  • 相关文献

参考文献12

  • 1冯瑞,张浩然,邵惠鹤.基于SVM的软测量建模[J].信息与控制,2002,31(6):567-571. 被引量:43
  • 2王华忠,俞金寿.基于PCA-SVM的软测量建模方法与应用[J].自动化仪表,2004,25(2):16-19. 被引量:11
  • 3王华忠,俞金寿.基于核函数主元分析的软测量建模方法及应用[J].华东理工大学学报(自然科学版),2004,30(5):567-570. 被引量:9
  • 4Wang Huazhong,Yu Jinshou.Application Study on Nonlinear Dynamic FIR Modeling Using Hybrid SVM-PLS Method.Accepted by the 5th world congress on intelligent control and automation,Hangzhou,2004
  • 5Vapnik V N The nature of Statistical Learning Theory.NY:Spring-Verlag,1998
  • 6Scholkopf B,Smola A,Muller K-R.Nonlinear Component Analysis as a Kernel Eigenvalue Problem [J].Neural Computation,1998:1299-1319
  • 7Rosipal R,Leonard J T.Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space[J].Journal of Machine Learning Research,2001:97-123
  • 8Rosipal R,Trejo L J,Matthews B et al.Nonlinear Kernel-Based Chemometric Tools:a Machine Learning Approach.In Proceedings of 3rd International Symposium on PLS and Related Methods(PLS'03),2003
  • 9Martin E B,Morris J,Zhang J.Process performance monitoring using multivariate statistical process control.IEEE Proc Control Theory,1996,143(2):132-144
  • 10Müller K-R,Mika S,Rtsch G.,et al.An introduction to kernel-based learning algorithms [J].IEEE transactions on neural networks,2001,12(2):181-202.

二级参考文献22

  • 1王旭东,邵惠鹤.神经元网络建模与软测量技术[J].化工自动化及仪表,1996,23(2):28-31. 被引量:30
  • 2Li Ning, Li Shaoyuan, Xi Yugeng. A multiple model approach to modeling based on LPF algorithm[J]. J of Systems Engineering and Electronics, 2001,12 (3): 64-70.
  • 3Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Trans on SMC,1985,15(4).116-132.
  • 4Sugeno M, Kang G T. Structure identification of fuzzy model[J]. Fuzzy Sets and Systems, 1988,28 (1) : 15-33.
  • 5Funahashi K J. On the approximate realization of continuous mapping by neural networks [J]. Neural Networks, 1989,15 (2) : 183-192.
  • 6Vapnik V. The Nature of Statistical Learning Theory[M]. New York : Springer Verlag, 1995.
  • 7Haykin S. Neural Networks: A Comprehensive Function[M]. Macmillan College Publishing Company Inc, 1994.
  • 8Smola A J, Scholkopf B. A tutorial on support vector regression[R]. NC2-TR-1998-030,1998.
  • 9Chang M-W, Lin C-J, Weng R C. Analysis of nonstationary time series using support vector machines [J].http ://www. csie. ntu. edu. tw/~cjlin/papers. html,April, 2002.
  • 10Burges C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998,2(2) : 113-145.

共引文献60

同被引文献75

引证文献6

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部