摘要
A stochastic optimal control strategy for partially observable nonlinear quasi Hamiltonian systems is proposed. The optimal control forces consist of two parts. The first part is determined by the conditions under which the stochastic optimal control problem of a partially observable nonlinear system is converted into that of a completely observable linear system. The second part is determined by solving the dynamical programming equation derived by applying the stochastic averaging method and stochastic dynamical programming principle to the completely observable linear control system. The response of the optimally controlled quasi Hamiltonian system is predicted by solving the averaged Fokker-Planck-Kolmogorov equation associated with the optimally controlled completely observable linear system and solving the Riccati equation for the estimated error of system states. An example is given to illustrate the procedure and effectiveness of the proposed control strategy.
A stochastic optimal control strategy for partially observable nonlinear quasi Hamiltonian systems is proposed. The optimal control forces consist of two parts. The first part is determined by the conditions under which the stochastic optimal control problem of a partially observable nonlinear system is converted into that of a completely observable linear system. The second part is determined by solving the dynamical programming equation derived by applying the stochastic averaging method and stochastic dynamical programming principle to the completely observable linear control system. The response of the optimally controlled quasi Hamiltonian system is predicted by solving the averaged Fok- ker-Planck-Kolmogorov equation associated with the optimally controlled completely observable linear system and solving the Riccati equation for the estimated error of system states. An example is given to illustrate the procedure and effec- tiveness of the proposed control strategy.
基金
Project supported by the National Natural Science Foundation ofChina (No. 10332030), the Special Fund for Doctor Programs inInstitutions of Higher Learning of China (No. 20020335092), andthe Zhejiang Provincial Natural Science Foundation (No. 101046),China