期刊文献+

Ni-Mo双金属氧化物催化剂CVD法大量制备成束多壁纳米碳管 被引量:3

Ni-Mo Bi-Metallic Oxide Catalyst for Large-scale Synthesis of Bundled Multi-walled Carbon Nanotubes by CVD
下载PDF
导出
摘要 采用溶胶凝胶法合成的Ni-Mo双金属氧化物催化剂,用CVD法催化裂解甲烷从而大量制备高质量高纯度的成束多壁纳米碳管.实验结果表明,该催化剂具有很高的活性和催化效率.反应2h后,制备的多壁纳米碳管的量可达到初始催化剂量的80倍以上.碳管的直径较均匀,在10~20nm之间.随着反应时间的延长,制备的纳米碳管石墨化程度增加,反应1h后,粗产品中纳米碳管的含量就超过了97%.简单放大后,单炉每克催化剂可以在0.5h内制得40g以上多壁纳米碳管. Ni-Mo bi-metallic oxide catalyst prepared by a sol-gel method has been used to synthesize high quality multi-walled carbon nanotube bundles with high purity by catalytic decomposition of CH4. The experiment reveals that the prepared catalysts have high activity and high efficiency. After reaction for 2 h, the quantity of synthesized MWNTs is over 80 times of the pristine catalysts. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), thermal gravimetric analysis (TGA), powder X-ray diffraction (XRD) and laser Raman spectroscopy have been performed to characterize the synthesized MWNT bundles. The results show that the synthesized MWNT bundles have a diameter distribution about 10 similar to 20 nm. The longer the reaction time is, the graphitization degree of the synthesized MWNT bundles is. After reaction for 1 h, the MWNT bundles with a high purity of more than 97% can be obtained. With a simple enlarged process, a single furnace can produce over 40 g MWNTs for 1 g of catalyst in 30 min.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2004年第10期1233-1238,共6页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(50172043) 国家重点基础研究发展规划"973"计划(G20000264-06) 高技术研究发展计划"863"计划(2002AA334020)资助项目~~
关键词 镍-钼双金属氧化物催化剂 成束多壁纳米碳管 制备 溶胶凝胶法 化学气相沉积法 multi-walled carbon nanotubes bundles sol-gel method chemical vapor deposition
  • 相关文献

参考文献17

  • 1Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Science,2002, 297:787
  • 2Ajayan, P. M. Chem. Rev., 1999, 99:1787
  • 3Dai, H. J. Surf. Sci., 2002, 500:218
  • 4Kong, J.; Soh, H. T.; Cassell, A. M.; Quate, C. F.; Dai,H. J. Nature, 1998, 395:878
  • 5Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H. ; Zou, B.S.; Zhou, W. Y.; Zhao, R. A.; Wang, G. Science, 1996,274:1701
  • 6Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush,P.; Siegal, M. P.; Provencio, P. N. Science, 1998, 282:1105
  • 7Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T.W.; Cassell, A. M.; Dai, H. J. Science, 1999, 283:512
  • 8Ning, Y. S.; Zhang, X. B.; Wang, Y. W.; Sun, Y. L.;Shen, L. H. ;Yang, X. F.; Tendeloo, G. V. Chem. Phys.Lett., 2002, 366:555
  • 9Li, Y.; Zhang, X. B.; Tao, X. Y.; Xu, J. M.; Chen, F.;Huang, W. Z. ;Liu, F. Chem. Phys. Lett., 2004, 386:105
  • 10Sinnott, S. B.; Andrews, R.; Qian, D.; Rao, A. M.; Mao,Z.; Dickey, E. C.; Derbyshire, F. Chem. Phys. Lett., 1999,315:25

同被引文献45

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部