摘要
建立数据挖掘模型的基石是数据仓库,数据仓库的质量直接影响到数据挖掘模型的建立与执行效率,并有可能影响到数据挖掘模型的最终结果的准确度。数据清理就是发现数据中的错误和不一致并加以消除,以提高数据的质量,使得数据挖掘模型建立的过程更加快捷和简便,挖掘出来的模式和规则也就更加有效和适用。
The footstone of creating a data mining model is data warehouse. The quality of data warehouse directly effects the efficiency of founding and implementing a data mining model, even effects the veracity of the final results of the data mining model. Data cleaning improves the quality of data by detecting wrong and inconsistent data and eliminating them. It makes the process of creating a data mining model speedily and handy, and makes the pattern and the rules of model efficaciously and applicably.
出处
《计算机应用研究》
CSCD
北大核心
2004年第12期209-211,225,共4页
Application Research of Computers