期刊文献+

Wavelets and Geometric Structure for Function Spaces

Wavelets and Geometric Structure for Function Spaces
原文传递
导出
摘要 With Littlewood–Paley analysis, Peetre and Triebel classified, systematically, almost all the usual function spaces into two classes of spaces: Besov spaces and Triebel–Lizorkin spaces ; but the structure of dual spaces of is very different from that of Besov spaces or that of Triebel–Lizorkin spaces, and their structure cannot be analysed easily in the Littlewood–Paley analysis. Our main goal is to characterize in tent spaces with wavelets. By the way, some applications are given: (i) Triebel–Lizorkin spaces for p = ∞ defined by Littlewood–Paley analysis cannot serve as the dual spaces of Triebel–Lizorkin spaces for p = 1; (ii) Some inclusion relations among these above spaces and some relations among and L 1 are studied. With Littlewood–Paley analysis, Peetre and Triebel classified, systematically, almost all the usual function spaces into two classes of spaces: Besov spaces and Triebel–Lizorkin spaces ; but the structure of dual spaces of is very different from that of Besov spaces or that of Triebel–Lizorkin spaces, and their structure cannot be analysed easily in the Littlewood–Paley analysis. Our main goal is to characterize in tent spaces with wavelets. By the way, some applications are given: (i) Triebel–Lizorkin spaces for p = ∞ defined by Littlewood–Paley analysis cannot serve as the dual spaces of Triebel–Lizorkin spaces for p = 1; (ii) Some inclusion relations among these above spaces and some relations among and L 1 are studied.
作者 QiXiangYANG
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2004年第2期357-366,共10页 数学学报(英文版)
基金 Supported by NNSF of China(Grant No.10001027)
关键词 Triebel–Lizorkin spaces Dual spaces WAVELETS Triebel–Lizorkin spaces Dual spaces Wavelets
  • 相关文献

参考文献9

  • 1Peetre. J.: New thought of Besov spaces, Duke University Press, 1976.
  • 2Triebel, H.: Theory of function spaces. Birkhauser Verlag, Basel, Boston and Stuttgart, 1983.
  • 3David, G., Journe, J. L.: A bounded criterion for generalized Calderon-Zygmund operators. Ann. of Math.,120. 371-397 (1984).
  • 4Meyer. Y.: Ondelettes et operateurs, Ⅰ-Ⅱ. Hermann, Paris, 1990-1991.
  • 5Yang, Q. X.: Tent spaces and general atomic decomposition for Triebel-Lizorkin spaces. Preprint.
  • 6Coifman, R., Meyer, Y. and Stein, E. M.: Un nouvel espace fonctionnel adapte a Letude des operateurs definis par des integrales singulieres. Pro. Conf. on Harmonic Analysis, Lecture Notes in Math., 992, 1-15,Spring-Verlag, Cortona, 1982.
  • 7Coifman, R., Meyer, Y. and Stein, E. M.: Some new function spaces and their applications to harmonic analysis, J. Funct. Analysis, 62, 304-335 (1985).
  • 8Meyer, Y.: La minimalite de l'espace de Besov B1^0,1 et la continuite des operateurs definis par des integrales singulieres, Monografias de Matematicas, Vol. 4, Univ. Autonoma de Madrid, 1986.
  • 9Stein, E. M. and Weiss, G.: On the theory of harmonic functions of several variables, I, The theory of H^p spaces. Acta Math., 103, 26-62 (1960).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部