摘要
With Littlewood–Paley analysis, Peetre and Triebel classified, systematically, almost all the usual function spaces into two classes of spaces: Besov spaces and Triebel–Lizorkin spaces ; but the structure of dual spaces of is very different from that of Besov spaces or that of Triebel–Lizorkin spaces, and their structure cannot be analysed easily in the Littlewood–Paley analysis. Our main goal is to characterize in tent spaces with wavelets. By the way, some applications are given: (i) Triebel–Lizorkin spaces for p = ∞ defined by Littlewood–Paley analysis cannot serve as the dual spaces of Triebel–Lizorkin spaces for p = 1; (ii) Some inclusion relations among these above spaces and some relations among and L 1 are studied.
With Littlewood–Paley analysis, Peetre and Triebel classified, systematically, almost all the usual function spaces into two classes of spaces: Besov spaces and Triebel–Lizorkin spaces ; but the structure of dual spaces of is very different from that of Besov spaces or that of Triebel–Lizorkin spaces, and their structure cannot be analysed easily in the Littlewood–Paley analysis. Our main goal is to characterize in tent spaces with wavelets. By the way, some applications are given: (i) Triebel–Lizorkin spaces for p = ∞ defined by Littlewood–Paley analysis cannot serve as the dual spaces of Triebel–Lizorkin spaces for p = 1; (ii) Some inclusion relations among these above spaces and some relations among and L 1 are studied.
基金
Supported by NNSF of China(Grant No.10001027)