期刊文献+

Maximal Subsemigroups of Finite Transformation Semigroups K(n,r) 被引量:19

Maximal Subsemigroups of Finite Transformation Semigroups K(n,r)
原文传递
导出
摘要 Let T n be the full transformation semigroup on the n-element set X n . For an arbitrary integer r such that 2 ≤ r ≤ n-1, we completely describe the maximal subsemigroups of the semigroup K(n, r) = {α ∈? T n : |im α| ≤ r}. We also formulate the cardinal number of such subsemigroups which is an answer to Problem 46 of Tetrad in 1969, concerning the number of subsemigroups of T n . Let T n be the full transformation semigroup on the n-element set X n . For an arbitrary integer r such that 2 ≤ r ≤ n-1, we completely describe the maximal subsemigroups of the semigroup K(n, r) = {α ∈? T n : |im α| ≤ r}. We also formulate the cardinal number of such subsemigroups which is an answer to Problem 46 of Tetrad in 1969, concerning the number of subsemigroups of T n .
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2004年第3期475-482,共8页 数学学报(英文版)
基金 supported by N.S.F.of Zhejiang Province and Hangzhou Teachers College
关键词 Transformation semigroup Maximal subsemigroups Transformation semigroup Maximal subsemigroups
  • 相关文献

参考文献11

  • 1Dénes, J.: On Transformations, Transformation semigroups and Graphs, Theory of Graphs. Proe. Colloq.Tihany, 65-75 (1966).
  • 2Bayramov, P. A.: On the problem of completeness in a symmetric semigroup of finite degree (in Russian).Diskret Analiz, 8, 3-27 (1966). MR 34, 7682.
  • 3Liebeck,M. W, Praeger, C. E., Saxl, J.: A classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra, 111,365-383 (1987).
  • 4Todorov, K., Kracolova, L.: On the maximal subsemigroups of the ideals of finite symmetric semigroups.Simon Stevin, 59(2), 129-140 (1985).
  • 5Yang, X. L.: Maximal subsemigroups of finite singular transformation semigroups. Communications in Aloebra, 29(3), 1175-1182 (2001).
  • 6Yang, X. L.: A classification of maximal inverse subsemigroups of the finite symmetric inverse semigroups.Communications in Algebra, 2T(8), 4089-4096 (1999).
  • 7Howie, J. M.: An introduction to semigroup theory, Academic Press, London, 1976.
  • 8Tetrad, S.: Unsolved problems in semigroup theory (in Russian). Sverdlovsk, 1969; (Engl. Transl., Semiqroup Forum, 4 , 274-280 (1972)). MR 42, 7807.
  • 9Fountain, J. M.: Abundant semigroups. Proc. London Math. Soc. (3), 44, 103-129 (1982).
  • 10Evseev,A. E,Podronl N,E.Semigroups of transformations generated by idempotents of given defect, lzv.Vyssh. Uchebn. Zaved. Mat., 2(117), 44-50 (1972).

同被引文献60

  • 1张传军,林屏峰,马敏耀.有限保序变换半群O_n的极大子半群[J].贵州师范大学学报(自然科学版),2006,24(4):82-85. 被引量:2
  • 2You T, Yang X. A classification of the maximal idempo- tent - generated subsemigroups of finite singular semig- roups [ J ]. Semigroup Forum,2002,64 (2) : 236 - 242.
  • 3Yang X, Yang H. Maximal regular subsemibands of Sing, [J]. Semigroup Forum,2006,72( 1 ) :75 -93.
  • 4Ping Zhao. A classification of maximal idempotent - gen- erated subsemigroups of singular orientation - preserving transformation semigroups [ J ]. Semigroup Forum, 2009, 79(2) :377 -384.
  • 5I. Dimimtrova, J. Koppitz. On the maximal regular sub- semigroups of ideals of order - preserving or order - re- versing transformations [ J ]. Semigroup Forum, 2011,82 (1) :172 -180.
  • 6I. Dimitrova and J. Koppitz. On the monoid of all partial order - preserving extensive transformations [ J ]. Comm. Algebra,2012,40(5 ) : 1821 - 1826.
  • 7Ping Zhao, Huabi Hu and Taijie You. A note on maximal regular subsemigroups of transformation semigroups [ J ]. Semigroup Forum ,2014,88(2) :324 - 334.
  • 8HOWIE J M. Fundamentals of semigroup theory[ M]. Ox- ford :The Clarendon Press, 1995 : 1 - 349.
  • 9Umar A. On the ranks of certain finite semigroups of or- der - decreasing transformations [ J ]. Portugaliae Mathe- matica, 1996,53 ( 1 ) :23 - 34.
  • 10YANG Xiuliang.Maximal Subsemigroups of the Finite Singular Transformation Semigroup[J].Communications in Algebra,2001,29(3):1175-1182.

引证文献19

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部