期刊文献+

基于人工神经网络预测磨合磨损的最佳分形维数 被引量:1

Optimum fractal dimension based on artificial neural network prediction of wear during running in process
下载PDF
导出
摘要 基于BP人工神经网络的L M算法 ,建立了磨合磨损的分形参数预测模型。将该模型用于销 盘磨合磨损试验 ,对最佳分形维数进行了准确预测。该模型收敛速度快、误差小 。 Based on L-M algorithm of BP artificial neural network, the fractal parametric prediction model of running in and wear was established. Let the model be used in the pin-disc running in and wear test, an accurate prediction was carried out upon the optimum fractal dimension. This model has a quick converging speed and a smaller error. The result of output has a very good coincidence with the result of test.
作者 董霖 张永相
出处 《机械设计》 CSCD 北大核心 2004年第11期43-44,共2页 Journal of Machine Design
关键词 神经网络 L-M算法 磨合磨损 最佳分形维数 neural network L-M algorithm running in and wear optimum fractal dimemsion
  • 相关文献

参考文献4

  • 1Stout K J, King T G, Whitehouse D J. Analytical techniques in surface topography and their application to a running-in experi ment[J]. Wear, 1997,43: 99-115.
  • 2Thomas T R. The characterization of changes in surface topogra phy during running- in[C]. Proceedings of the 4th leedslynon symposium on tribology, Leeds, 1997:98-108.
  • 3Zhou G Y, Leu M C, Blackmore D. Fractal geometry model for wear prediction[J]. Wear, 1993,170:1 - 14.
  • 4Chen S, Billings S A. Neural networks for nonlinear dynamic system modeling andidentification[J]. INTJ Control, 1992,56(2):319-346.

同被引文献8

引证文献1

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部