期刊文献+

用于连续函数优化的蚁群算法 被引量:67

Ant Colony System for Continuous Function Optimization
下载PDF
导出
摘要 为了用蚁群算法来解决连续优化问题,该算法将函数优化问题中生成解的过程转化为蚁群每前进一步就选择一个十进制数字并以此来生成一个十进制串的过程。与普通蚁群算法相同,蚁群在选择数字的过程中将一定量的信息记录在每条选择的路径上以改变下一次蚁群选择各个数字的概率。实验数据表明,文中的函数优化算法能比遗传算法以及其他用于连续优化的蚁群算法更快地找到更好的解。这种算法为蚁群算法求解连续优化问题提供了一种新的方法。 Based on Ant Colony System,a new algorithm for continuous function optimization is propose.Each ant makes a selection from ten decimal numbers whenever it takes a step in this algorithm. And in this way a solution for the function optimization problem can be built. The same as general Ant Colony System, the ants will change the information left on their paths, so that the probability that an ant chooses a number in a step next time can be changed to lead the ant to a better path. The experimental result shows that this new algorithm can find a better solution for function optimization problem than genetic algorithms and other ant colony system for continuous optimization. This new algorithm presents a new way to solve continuous optimization problems.
作者 陈烨
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 2004年第6期117-120,共4页 Journal of Sichuan University (Engineering Science Edition)
关键词 蚁群算法 旅行商问题 连续函数优化 Ant Colony System traveling salesman problem continuous function optimization
  • 相关文献

参考文献1

  • 1Macro Dorigo, Gianni Di Caro, Luca M Gambardella. Ant algorithms for discrete optimization[J]. Artificial Life,1999,5(3):137-172.

共引文献1

同被引文献628

引证文献67

二级引证文献413

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部