摘要
Three model polyurethane hard segments based on dimethylol butanoic acid (DMBA) and 1,6-hexane diisocyanate (HDI), toluene diisocyanate (TDI) and 4,4'-diphenylmethane diisocyanate (MDI) were prepared by the solution method. Fourier Infrared (FTIR) spectroscopy was employed to study the H-bonds in these model polyurethanes. The model polyurethane hard segment prepared from HDI and 1,4-butanodiol (BDO) was used for comparison. It was found that the incorporation of the pendent carboxyl through DMBA into the model hard segments weakens the original NH…O = C H-bond but gives more H-bond patterns based on the two H-bond donors, urethane NH and carboxylic OH. The carboxylic dimer is one of the main H-bond types and is stronger than another main H-bond type NH…O=C. In addition, the H-bond in aromatic model hard segments is stronger than that of aliphatic hard segments. The appearance of the free C=O and the fact that almost all N—H is H-bonded suggest that there possibly exist either the third H-bond acceptor or the H-bond formed by one acceptor with two donors.
Three model polyurethane hard segments based on dimethylol butanoic acid (DMBA) and 1,6-hexane diisocyanate (HDI), toluene diisocyanate (TDI) and 4,4'-diphenylmethane diisocyanate (MDI) were prepared by the solution method. Fourier Infrared (FTIR) spectroscopy was employed to study the H-bonds in these model polyurethanes. The model polyurethane hard segment prepared from HDI and 1,4-butanodiol (BDO) was used for comparison. It was found that the incorporation of the pendent carboxyl through DMBA into the model hard segments weakens the original NH…O = C H-bond but gives more H-bond patterns based on the two H-bond donors, urethane NH and carboxylic OH. The carboxylic dimer is one of the main H-bond types and is stronger than another main H-bond type NH…O=C. In addition, the H-bond in aromatic model hard segments is stronger than that of aliphatic hard segments. The appearance of the free C=O and the fact that almost all N—H is H-bonded suggest that there possibly exist either the third H-bond acceptor or the H-bond formed by one acceptor with two donors.
基金
This work was supported by the Natural Science Foundation of Henan Province (004030600)