摘要
The thermal behavior of Tb_2(BA)_6(PHEN)_2 (BA: benzoate, and PHEN:1,10-phenanthroline) in a static air atmosphere was investigated by TG-DTG, SEM and IR techniques.By the kinetic method of processing thermal analysis data put forward by Malek et al., it is definedthat the kinetic model for the first-step thermal decomposition is SB(m, n). The activation energyE for this step reaction is 99.07 kJ/mol, the entropy of activation ΔS~≠ is -84.72 J/mol, theenthalpy of activation ΔH~≠ is 94.26 kJ/mol, the free energy of activation ΔG~≠ is 144.77 kJ/moland the pre-exponential factor lnA is 20.93. The lifetime equation at mass-loss of 10% was deducedas lnτ = -29.0312 + 19760.83/T by isothermal thermogravimetric analysis.
The thermal behavior of Tb_2(BA)_6(PHEN)_2 (BA: benzoate, and PHEN:1,10-phenanthroline) in a static air atmosphere was investigated by TG-DTG, SEM and IR techniques.By the kinetic method of processing thermal analysis data put forward by Malek et al., it is definedthat the kinetic model for the first-step thermal decomposition is SB(m, n). The activation energyE for this step reaction is 99.07 kJ/mol, the entropy of activation ΔS~≠ is -84.72 J/mol, theenthalpy of activation ΔH~≠ is 94.26 kJ/mol, the free energy of activation ΔG~≠ is 144.77 kJ/moland the pre-exponential factor lnA is 20.93. The lifetime equation at mass-loss of 10% was deducedas lnτ = -29.0312 + 19760.83/T by isothermal thermogravimetric analysis.
基金
This project was supported by the Natural Science Foundation of Hebei Province (No. 202140
No. 203148) and Hebei Education Department (No. 2001121).