摘要
讨论了赋范空间中度量投影的收敛性.得到了在局部紧集控制下,Chebyshev凸集序列的度量投影的收敛性与K-M收敛,Wijsman收敛和Kuratowski收敛都等价.本文的结论完善了M.Tsukada在[1]和[2]结果.
In this paper, we study the convergence of metric productions for a sequence of convex sets in a normed space which may be nonreflexive. Our central result is that the convergence of metric projections, K-M conversence, Wijsman convergence and Kuratowski convergence are all equivalent for a sequence of Chebyshev convex sets which is dominated by a locally compact set. Our resultcompletes M. Tsukada' s in [1] and[2]
出处
《数学研究》
CSCD
1998年第3期244-247,共4页
Journal of Mathematical Study
关键词
收敛性
紧集
等价
凸集
赋范空间
投影
度量
完善
metric projections, K-M convergence, Wijsman convergence, Chebyshev set